Optimal scheduling of COVID-19 pandemic supply disruptions under uncertainty

With the outbreak of COVID-19 pandemic, the problem of supply chain emergency scheduling has had a great influence on economic benefits of enterprises. The uncertainty of the COVID-19 pandemic and uncertainty of supply chain have made the problem of emergency scheduling more complicated. In this stu...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; p. 1
Main Authors Cao, Wei, Wang, Xifu
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2022.3218467

Cover

More Information
Summary:With the outbreak of COVID-19 pandemic, the problem of supply chain emergency scheduling has had a great influence on economic benefits of enterprises. The uncertainty of the COVID-19 pandemic and uncertainty of supply chain have made the problem of emergency scheduling more complicated. In this study, a multiobjective multiperiod mixed-integer programming optimization model was developed, in which two conflicting benefit factors, cost and service level were taken as the optimization target of the model. Cost and service level were normalized, and the weighted sum was taken as the objective function, which transformed the problem into a multiperiod nonlinear one. Two algorithms of Bi-level Modified Hybrid Genetic Algorithm (BMHGA) and Bi-level Hybrid Genetic Algorithm (BHGA) were designed to solve the model. Three emergency strategies have been proposed, including enabling alternative suppliers, repairing failure nodes and enabling internal suppliers' flexibility. The parameter of disruption scenario and its solution method were designed. Finally, the practicability of the proposed model and algorithm was demonstrated through application to a case study of an electronics supply chain. The results indicated that the optimal solution of two algorithms was between 2%-5%, and BMHGA could obtain a better optimal solution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3218467