Classification of Endomicroscopic Images of the Lung Based on Random Subwindows and Extra-Trees
Recently, the in vivo imaging of pulmonary alveoli was made possible thanks to confocal microscopy. For these images, we wish to aid the clinician by developing a computer-aided diagnosis system, able to discriminate between healthy and pathological subjects. The lack of expertise currently availabl...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 59; no. 9; pp. 2677 - 2683 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.09.2012
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 1558-2531 |
DOI | 10.1109/TBME.2012.2204747 |
Cover
Summary: | Recently, the in vivo imaging of pulmonary alveoli was made possible thanks to confocal microscopy. For these images, we wish to aid the clinician by developing a computer-aided diagnosis system, able to discriminate between healthy and pathological subjects. The lack of expertise currently available on these images has first led us to choose a generic approach, based on pixel-value description of randomly extracted subwindows and decision tree ensemble for classification (extra-trees). In order to deal with the great complexity of our images, we adapt this method by introducing a texture-based description of the subwindows, based on local binary patterns. We show through our experimental protocol that this adaptation is a promising way to classify fibered confocal fluorescence microscopy images. In addition, we introduce a rejection mechanism on the classifier output to prevent nondetection errors. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0018-9294 1558-2531 1558-2531 |
DOI: | 10.1109/TBME.2012.2204747 |