Ti/Au/Al/Ni/Au Low Contact Resistance and Sharp Edge Acuity for Highly Scalable AlGaN/GaN HEMTs

In this letter, we have reported a novel metal scheme Ti/Au/Al/Ni/Au for ohmic contact on AlGaN/GaN high-electron-mobility transistors. The reported metal scheme is observed to show minimum metal out-diffusion and sharp edge acuity at high-temperature annealing, which facilitates aggressive scaling...

Full description

Saved in:
Bibliographic Details
Published inIEEE electron device letters Vol. 40; no. 1; pp. 67 - 70
Main Authors Yadav, Yogendra K., Upadhyay, Bhanu B., Meer, Mudassar, Bhardwaj, Navneet, Ganguly, Swaroop, Saha, Dipankar
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0741-3106
1558-0563
DOI10.1109/LED.2018.2884155

Cover

More Information
Summary:In this letter, we have reported a novel metal scheme Ti/Au/Al/Ni/Au for ohmic contact on AlGaN/GaN high-electron-mobility transistors. The reported metal scheme is observed to show minimum metal out-diffusion and sharp edge acuity at high-temperature annealing, which facilitates aggressive scaling of source-drain separation (<inline-formula> <tex-math notation="LaTeX">{L} _{\textsf {SD}} </tex-math></inline-formula>). We have demonstrated <inline-formula> <tex-math notation="LaTeX">{L} _{\textsf {SD}} </tex-math></inline-formula> as low as 300 nm with gate length (<inline-formula> <tex-math notation="LaTeX">{L} _{\textsf {g}} </tex-math></inline-formula>) of 100 nm for this metal stack. We observed improvement in ON-resistance (<inline-formula> <tex-math notation="LaTeX">{R} _{\mathrm{\scriptscriptstyle ON}} </tex-math></inline-formula>) from 3 to <inline-formula> <tex-math notation="LaTeX">1.25~\Omega \cdot </tex-math></inline-formula>mm, transconductance (<inline-formula> <tex-math notation="LaTeX">{g} _{\textsf {m}} </tex-math></inline-formula>) from 276 to 365 mS/mm, saturation drain current (<inline-formula> <tex-math notation="LaTeX">{I} _{\textsf {DS,sat}} </tex-math></inline-formula>) from 906 to 1230 mA/mm, and unity current gain frequency (<inline-formula> <tex-math notation="LaTeX">{f} _{\textsf {T}} </tex-math></inline-formula>) from 70 to 93 GHz by scaling <inline-formula> <tex-math notation="LaTeX">{L} _{\textsf {SD}} </tex-math></inline-formula> from <inline-formula> <tex-math notation="LaTeX">3~\mu \text{m} </tex-math></inline-formula> to 300 nm. The gate lengths for all devices were 100 nm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0741-3106
1558-0563
DOI:10.1109/LED.2018.2884155