Generalized Isotonic Regression

We present a new computational and statistical approach for fitting isotonic models under convex differentiable loss functions through recursive partitioning. Models along the partitioning path are also isotonic and can be viewed as regularized solutions to the problem. Our approach generalizes and...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and graphical statistics Vol. 23; no. 1; pp. 192 - 210
Main Authors Luss, Ronny, Rosset, Saharon
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 01.03.2014
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1061-8600
1537-2715
DOI10.1080/10618600.2012.741550

Cover

Abstract We present a new computational and statistical approach for fitting isotonic models under convex differentiable loss functions through recursive partitioning. Models along the partitioning path are also isotonic and can be viewed as regularized solutions to the problem. Our approach generalizes and subsumes the well-known work of Barlow and Brunk on fitting isotonic regressions subject to specially structured loss functions, and expands the range of loss functions that can be used (e.g., adding Huber loss for robust regression). This is accomplished through an algorithmic adjustment to a recursive partitioning approach recently developed for solving large-scale ł 2 -loss isotonic regression problems. We prove that the new algorithm solves the generalized problem while maintaining the favorable computational and statistical properties of the l 2 algorithm. The results are demonstrated on both real and synthetic data in two settings: fitting count data using negative Poisson log-likelihood loss, and fitting robust isotonic regressions using Huber loss. Proofs of theorems and a MATLAB-based software package implementing our algorithm are available in the online supplementary materials.
AbstractList We present a new computational and statistical approach for fitting isotonic models under convex differentiable loss functions through recursive partitioning. Models along the partitioning path are also isotonic and can be viewed as regularized solutions to the problem. Our approach generalizes and subsumes the well-known work of Barlow and Brunk on fitting isotonic regressions subject to specially structured loss functions, and expands the range of loss functions that can be used (e.g., adding Huber loss for robust regression). This is accomplished through an algorithmic adjustment to a recursive partitioning approach recently developed for solving large-scale ...-loss isotonic regression problems. We prove that the new algorithm solves the generalized problem while maintaining the favorable computational and statistical properties of the ... algorithm. The results are demonstrated on both real and synthetic data in two settings: fitting count data using negative Poisson log-likelihood loss, and fitting robust isotonic regressions using Huber loss. Proofs of theorems and a MATLAB-based software package implementing our algorithm are available in the online supplementary materials. (ProQuest: ... denotes formulae/symbols omitted.)
We present a new computational and statistical approach for fitting isotonic models under convex differentiable loss functions through recursive partitioning. Models along the partitioning path are also isotonic and can be viewed as regularized solutions to the problem. Our approach generalizes and subsumes the well-known work of Barlow and Brunk on fitting isotonic regressions subject to specially structured loss functions, and expands the range of loss functions that can be used (e.g., adding Huber loss for robust regression). This is accomplished through an algorithmic adjustment to a recursive partitioning approach recently developed for solving large-scale l₂-loss isotonic regression problems. We prove that the new algorithm solves the generalized problem while maintaining the favorable computational and statistical properties of the l₂ algorithm. The results are demonstrated on both real and synthetic data in two settings: fitting count data using negative Poisson log-likelihood loss, and fitting robust isotonic regressions using Huber loss. Proofs of theorems and a MATLAB-based software package implementing our algorithm are available in the online supplementary materials.
We present a new computational and statistical approach for fitting isotonic models under convex differentiable loss functions through recursive partitioning. Models along the partitioning path are also isotonic and can be viewed as regularized solutions to the problem. Our approach generalizes and subsumes the well-known work of Barlow and Brunk on fitting isotonic regressions subject to specially structured loss functions, and expands the range of loss functions that can be used (e.g., adding Huber loss for robust regression). This is accomplished through an algorithmic adjustment to a recursive partitioning approach recently developed for solving large-scale ł 2 -loss isotonic regression problems. We prove that the new algorithm solves the generalized problem while maintaining the favorable computational and statistical properties of the l 2 algorithm. The results are demonstrated on both real and synthetic data in two settings: fitting count data using negative Poisson log-likelihood loss, and fitting robust isotonic regressions using Huber loss. Proofs of theorems and a MATLAB-based software package implementing our algorithm are available in the online supplementary materials.
Author Luss, Ronny
Rosset, Saharon
Author_xml – sequence: 1
  givenname: Ronny
  surname: Luss
  fullname: Luss, Ronny
– sequence: 2
  givenname: Saharon
  surname: Rosset
  fullname: Rosset, Saharon
BookMark eNqFkE9LAzEQxYNUsK1-A8WC562T3c1m14tI0SoUBNFzyOaPpGyTmqRI_fRmWfXgQU8zMO837_EmaGSdVQidYphjqOESQ4XrCmCeA87ntMSEwAEaY1LQLKeYjNKeJFmvOUKTENYAgKuGjtH5UlnleWc-lJw9BBedNWL2pF69CsE4e4wONe-COvmaU_Ryd_u8uM9Wj8uHxc0qEwWhMWtaqCSoUvMGl21ZN5VUBGNRyJxWrRZEcE25BClFJUSrqW650K0GQUveqLqYoovh79a7t50Kka3dzttkyTABaMqiIDiprgaV8C4ErzQTJvKYckbPTccwsL4Q9l0I6wthQyEJLn_BW2823O__w84GbB2i8z9MCgSE5n2m6-FurHZ-w9-d7ySLfN85rz23wgRW_OnwCQM6gf0
CitedBy_id crossref_primary_10_1007_s00521_017_3215_1
crossref_primary_10_1080_10618600_2015_1121728
crossref_primary_10_1111_sjos_12775
crossref_primary_10_1109_ACCESS_2020_3041084
crossref_primary_10_1080_01621459_2018_1537917
crossref_primary_10_1214_17_EJS1365
crossref_primary_10_1021_acsami_4c01277
crossref_primary_10_1109_TPAMI_2015_2441063
crossref_primary_10_1007_s11009_022_09937_2
crossref_primary_10_1007_s10463_021_00808_0
crossref_primary_10_1214_23_EJS2115
crossref_primary_10_1587_transfun_E101_A_1334
Cites_doi 10.1080/01621459.1986.10478291
10.1007/978-0-387-21606-5
10.1287/opre.49.5.784.10601
10.1080/01621459.1997.10473609
10.1017/CBO9780511804441
10.1186/gb-2008-9-s1-s6
10.1111/j.2517-6161.1996.tb02080.x
10.1137/1.9781611970128
10.1007/BF02289565
10.1023/A:1023901806339
10.1016/0022-0000(80)90035-5
10.7551/mitpress/4175.001.0001
10.1137/S1052623497314970
10.1287/moor.11.4.699
10.1287/opre.33.6.1316
10.1214/11-AOAS504
10.1080/01621459.1972.10481216
10.1016/0022-0000(83)90006-5
10.1137/S0895480100369584
ContentType Journal Article
Copyright 2014 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2014
2014 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America
Copyright American Statistical Association 2014
Copyright_xml – notice: 2014 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2014
– notice: 2014 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America
– notice: Copyright American Statistical Association 2014
DBID AAYXX
CITATION
JQ2
DOI 10.1080/10618600.2012.741550
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection


DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 210
ExternalDocumentID 3226118021
10_1080_10618600_2012_741550
43305721
741550
Genre Article
Feature
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
2AX
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABQDR
ABTAI
ABXSQ
ABXUL
ABXYU
ABYWD
ACDIW
ACGFO
ACGFS
ACHJO
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
ADODI
ADULT
ADXHL
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFRVT
AFVYC
AGDLA
AGLNM
AGMYJ
AHDZW
AIAGR
AIHAF
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HQ6
HZ~
H~P
IPNFZ
IPSME
J.P
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
KYCEM
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
ADYSH
AMPGV
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c357t-9b06d0e4fa914b4896de511c3d276bfc5caf7ad0ddc6ccbf7fbacfbf0c74a9e83
ISSN 1061-8600
IngestDate Wed Aug 13 07:27:23 EDT 2025
Wed Oct 01 06:31:23 EDT 2025
Thu Apr 24 23:02:12 EDT 2025
Fri May 30 11:49:08 EDT 2025
Mon Oct 20 23:39:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c357t-9b06d0e4fa914b4896de511c3d276bfc5caf7ad0ddc6ccbf7fbacfbf0c74a9e83
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1500943351
PQPubID 29738
PageCount 19
ParticipantIDs crossref_citationtrail_10_1080_10618600_2012_741550
proquest_journals_1500943351
jstor_primary_43305721
crossref_primary_10_1080_10618600_2012_741550
informaworld_taylorfrancis_310_1080_10618600_2012_741550
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationYear 2014
Publisher Taylor & Francis
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
– name: Taylor & Francis Ltd
References cit0012
Wahba G. (cit0027) 1990
cit0010
Rosset S. (cit0019) 2004; 5
Schölkopf B. (cit0022) 2001
Hochbaum D.S. (cit0011) 2003; 16
Obozinski G. (cit0018) 2008; 9
Spouge M. (cit0024) 2003; 117
Ahuja R.K. (cit0001) 1993
Caruana R. (cit0006) 2000
Galil Z. (cit0009) 1980; 21
Luss R. (cit0014) 2012; 6
Zheng Z. (cit0028) 2008
cit0015
Tibshirani R. (cit0026) 1996; 58
Murty K. (cit0017) 1983
cit0023
cit0020
cit0021
cit0007
cit0004
cit0005
Luss R. (cit0013) 2010
cit0002
cit0003
References_xml – ident: cit0007
  doi: 10.1080/01621459.1986.10478291
– ident: cit0010
  doi: 10.1007/978-0-387-21606-5
– ident: cit0002
  doi: 10.1287/opre.49.5.784.10601
– ident: cit0021
  doi: 10.1080/01621459.1997.10473609
– ident: cit0005
  doi: 10.1017/CBO9780511804441
– start-page: 1513–1521
  volume-title: Proceeedings of the Neural Information Processing Systems Conference
  year: 2010
  ident: cit0013
– volume-title: Network Flows: Theory, Algorithms, and Applications
  year: 1993
  ident: cit0001
– start-page: 1108–1115
  volume-title: Proceedings of the Forty-Sixth Annual Allerton Conference on Communication, Control, and Computing
  year: 2008
  ident: cit0028
– volume-title: Linear Programming
  year: 1983
  ident: cit0017
– volume: 9
  start-page: 247
  year: 2008
  ident: cit0018
  publication-title: Genome Biology
  doi: 10.1186/gb-2008-9-s1-s6
– volume: 58
  start-page: 267
  year: 1996
  ident: cit0026
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume-title: Spline Models for Observational Data (CBMS-NSF Regional Conference Series in Applied Mathematics)
  year: 1990
  ident: cit0027
  doi: 10.1137/1.9781611970128
– ident: cit0012
  doi: 10.1007/BF02289565
– volume: 117
  start-page: 585
  year: 2003
  ident: cit0024
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1023/A:1023901806339
– volume: 21
  start-page: 203
  year: 1980
  ident: cit0009
  publication-title: Journal of Computer and System Sciences
  doi: 10.1016/0022-0000(80)90035-5
– volume-title: Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
  year: 2001
  ident: cit0022
  doi: 10.7551/mitpress/4175.001.0001
– ident: cit0004
  doi: 10.1137/S1052623497314970
– start-page: 402–408
  volume-title: Proceedings of the Neural Information Processing Systems Conference
  year: 2000
  ident: cit0006
– volume: 5
  start-page: 941
  year: 2004
  ident: cit0019
  publication-title: Journal of Machine Learning Research
– ident: cit0020
  doi: 10.1287/moor.11.4.699
– ident: cit0015
  doi: 10.1287/opre.33.6.1316
– volume: 6
  start-page: 253
  year: 2012
  ident: cit0014
  publication-title: Annals of Applied Statistics
  doi: 10.1214/11-AOAS504
– ident: cit0003
  doi: 10.1080/01621459.1972.10481216
– ident: cit0023
  doi: 10.1016/0022-0000(83)90006-5
– volume: 16
  start-page: 192
  year: 2003
  ident: cit0011
  publication-title: SIAM Journal on Discrete Mathematics
  doi: 10.1137/S0895480100369584
SSID ssj0001697
Score 2.2028017
Snippet We present a new computational and statistical approach for fitting isotonic models under convex differentiable loss functions through recursive partitioning....
SourceID proquest
crossref
jstor
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 192
SubjectTerms Algorithms
Convex optimization
Datasets
Integers
Isotonic solutions
Isotonicity
Iterative solutions
Mathematical models
Nonparametric regression
Optimal solutions
Outliers
Regression analysis
Regression Methods
Regularization path
Simulation training
Software packages
Studies
Theorems
Title Generalized Isotonic Regression
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2012.741550
https://www.jstor.org/stable/43305721
https://www.proquest.com/docview/1500943351
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1537-2715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: AHDZW
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1537-2715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZW5VIOqBQqlhbYA1cXZ-04zhEhUEFqD0sr9Rb5CUgoi7rppQd-O-NnsmrL6xJFVmxHM-OZyeSbGYReG8lB81cWu8o2mDEncVsLg2tVGy24YCrkcZ-e8ZML9umyvpzNfk6zSwZ1rG_uzCv5H67CGPDVZ8n-A2fLojAA98BfuAKH4fpXPE41o7_dgNf4cbMeQjeblf0Ssa39PY6nDo0cchDQB85D1eqYH-nHQ-nmgtS5jm3VV-u-L-H3FZjW-Bfjs_wqr9JWKXhQsRE9NcHry9ArOK6-LRdRT01AC6ellqyvVVJeKSNNQxTTSdBIY1OoEPmY_oOaaFtwJrDghEzVcUw_3hK7qFur2DQvmellRMPesgARMulX9gt77N7yOHhNZLR4BYfIKKi7xtcheLAEq-Bbf1ByVix5lZrz5NfMqZeCvLlrgy3XZqvwbQa73jL4wYs530OPkhQs3kZZeoxmtt9HD0d6b_bR7kjwJ-jVRMQWWcQWo4g9RRcf3p-_O8GppwbWtG4G3CrCDbFwJtuKKSZabiz43JoaIIByutbSNdIQYzTXWrnGKamdckQ3TLZW0AO00697-wwtqBJgDiSsRStm26UUjFreSse5AS_YzRHN5Oh0Kjjv-55876pUlzYTsfNE7CIR5wiXWT9iwZU_PC-mlO6GEOhysStNR38_9SBwpeyTxWGOjjKbunTcNx18OXkULq2r5_fNO0S74yE7QjvD1bV9AT7roF4GwfoF0IaT4w
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4hGICBN6K8moHVJakdxxkRoirQdkBFYrP8RAjUIpIu_HrsOKl4CJBgTs6W7-x7WJ-_AzjRgjrPnxhkE5MhQqxAeco0SmWqFaOMyOod93BE-7fk6i5t0IRFDav0NbQNRBGVr_aH219GN5C4U1_GMBepPTKr26lioqval1KX6_smBjgezZ1xUvdXcRLIizSv574Z5UN0-sBd2uAVv_jsKhD11kE2Swj4k8fOrJQd9fqJ3fFfa9yAtTpNjc7CvtqEBTPZgtXhnOO12IIVn6cGmudtaNf01Q-vRkeXxbT0jLvRjbkPMNvJDtz2LsbnfVT3XkAKp1mJchlTHRtnuzwhkrCcauNyM4V1N6PSqlQJmwkda62oUtJmVgplpY1VRkRuGN6Fxcl0YvYgwpI5tyHcWDghJu8KRrChubCUapct2RbgRudc1cTkvj_GE09q_tJGF9zrggddtADNpZ4DMccv_7P35uRldSFiQ_cSjn8W3a1MP5-HYOclXencgsNmL_D66BfcZdgerYnTZP_vU7ZhuT8eDvjgcnR9ACvuCwnAt0NYLF9m5shlQqU8rvb6Gx7r-A4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6kgujBd7E-e_Cauttks9mjqMVXi4iF3kKeIkpb7PbirzfZ7BarqKDn3SRkMpnH7jffABxrQZ3ljw2ysUkRIVagLGEaJTLRilFGZFHH3e3Ryz65HiSDD1X8Hlbpc2gbiCIKW-0v91jbChF34rMY5hy1B2a1W4VLdEn7IvU_xXwRR9Sb2eK4bK_iRiA_pCqe-2aWOec0R11awRW_mOzCD3XWQFQ7CPCT59Y0ly319onc8T9bXIfVMkhtngat2oAFM9yEle6M4XWyCcs-Sg0kz1twVJJXP70Z3byajHLPt9u8N48BZDvchn7n4uHsEpWdF5DCSZqjTEZUR8adXBYTSVhGtXGRmcK6nVJpVaKETYWOtFZUKWlTK4Wy0kYqJSIzDNehNhwNzQ40sWTOaAg3F46JydqCEWxoJiyl2sVKtgG4EjlXJS25747xwuOSvbSSBfey4EEWDUCzUeNAy_HL--zjafK8-BxiQ-8Sjn8eWi9OfrYOwc5GusS5AfuVKvDy4k-4i689VtNp4u7flzyCpbvzDr-96t3swbJ7QALqbR9q-evUHLgwKJeHhaa_AwkQ9rI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Isotonic+Regression&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Luss%2C+Ronny&rft.au=Rosset%2C+Saharon&rft.date=2014-03-01&rft.pub=American+Statistical+Association%2C+Institute+of+Mathematical+Statistics%2C+and+Interface+Foundation+of+North+America&rft.issn=1061-8600&rft.volume=23&rft.issue=1&rft.spage=192&rft.epage=210&rft_id=info:doi/10.1080%2F10618600.2012.741550&rft.externalDocID=43305721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon