Generalized Isotonic Regression
We present a new computational and statistical approach for fitting isotonic models under convex differentiable loss functions through recursive partitioning. Models along the partitioning path are also isotonic and can be viewed as regularized solutions to the problem. Our approach generalizes and...
Saved in:
| Published in | Journal of computational and graphical statistics Vol. 23; no. 1; pp. 192 - 210 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Alexandria
Taylor & Francis
01.03.2014
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1061-8600 1537-2715 |
| DOI | 10.1080/10618600.2012.741550 |
Cover
| Abstract | We present a new computational and statistical approach for fitting isotonic models under convex differentiable loss functions through recursive partitioning. Models along the partitioning path are also isotonic and can be viewed as regularized solutions to the problem. Our approach generalizes and subsumes the well-known work of Barlow and Brunk on fitting isotonic regressions subject to specially structured loss functions, and expands the range of loss functions that can be used (e.g., adding Huber loss for robust regression). This is accomplished through an algorithmic adjustment to a recursive partitioning approach recently developed for solving large-scale ł
2
-loss isotonic regression problems. We prove that the new algorithm solves the generalized problem while maintaining the favorable computational and statistical properties of the l
2
algorithm. The results are demonstrated on both real and synthetic data in two settings: fitting count data using negative Poisson log-likelihood loss, and fitting robust isotonic regressions using Huber loss. Proofs of theorems and a MATLAB-based software package implementing our algorithm are available in the online supplementary materials. |
|---|---|
| AbstractList | We present a new computational and statistical approach for fitting isotonic models under convex differentiable loss functions through recursive partitioning. Models along the partitioning path are also isotonic and can be viewed as regularized solutions to the problem. Our approach generalizes and subsumes the well-known work of Barlow and Brunk on fitting isotonic regressions subject to specially structured loss functions, and expands the range of loss functions that can be used (e.g., adding Huber loss for robust regression). This is accomplished through an algorithmic adjustment to a recursive partitioning approach recently developed for solving large-scale ...-loss isotonic regression problems. We prove that the new algorithm solves the generalized problem while maintaining the favorable computational and statistical properties of the ... algorithm. The results are demonstrated on both real and synthetic data in two settings: fitting count data using negative Poisson log-likelihood loss, and fitting robust isotonic regressions using Huber loss. Proofs of theorems and a MATLAB-based software package implementing our algorithm are available in the online supplementary materials. (ProQuest: ... denotes formulae/symbols omitted.) We present a new computational and statistical approach for fitting isotonic models under convex differentiable loss functions through recursive partitioning. Models along the partitioning path are also isotonic and can be viewed as regularized solutions to the problem. Our approach generalizes and subsumes the well-known work of Barlow and Brunk on fitting isotonic regressions subject to specially structured loss functions, and expands the range of loss functions that can be used (e.g., adding Huber loss for robust regression). This is accomplished through an algorithmic adjustment to a recursive partitioning approach recently developed for solving large-scale l₂-loss isotonic regression problems. We prove that the new algorithm solves the generalized problem while maintaining the favorable computational and statistical properties of the l₂ algorithm. The results are demonstrated on both real and synthetic data in two settings: fitting count data using negative Poisson log-likelihood loss, and fitting robust isotonic regressions using Huber loss. Proofs of theorems and a MATLAB-based software package implementing our algorithm are available in the online supplementary materials. We present a new computational and statistical approach for fitting isotonic models under convex differentiable loss functions through recursive partitioning. Models along the partitioning path are also isotonic and can be viewed as regularized solutions to the problem. Our approach generalizes and subsumes the well-known work of Barlow and Brunk on fitting isotonic regressions subject to specially structured loss functions, and expands the range of loss functions that can be used (e.g., adding Huber loss for robust regression). This is accomplished through an algorithmic adjustment to a recursive partitioning approach recently developed for solving large-scale ł 2 -loss isotonic regression problems. We prove that the new algorithm solves the generalized problem while maintaining the favorable computational and statistical properties of the l 2 algorithm. The results are demonstrated on both real and synthetic data in two settings: fitting count data using negative Poisson log-likelihood loss, and fitting robust isotonic regressions using Huber loss. Proofs of theorems and a MATLAB-based software package implementing our algorithm are available in the online supplementary materials. |
| Author | Luss, Ronny Rosset, Saharon |
| Author_xml | – sequence: 1 givenname: Ronny surname: Luss fullname: Luss, Ronny – sequence: 2 givenname: Saharon surname: Rosset fullname: Rosset, Saharon |
| BookMark | eNqFkE9LAzEQxYNUsK1-A8WC562T3c1m14tI0SoUBNFzyOaPpGyTmqRI_fRmWfXgQU8zMO837_EmaGSdVQidYphjqOESQ4XrCmCeA87ntMSEwAEaY1LQLKeYjNKeJFmvOUKTENYAgKuGjtH5UlnleWc-lJw9BBedNWL2pF69CsE4e4wONe-COvmaU_Ryd_u8uM9Wj8uHxc0qEwWhMWtaqCSoUvMGl21ZN5VUBGNRyJxWrRZEcE25BClFJUSrqW650K0GQUveqLqYoovh79a7t50Kka3dzttkyTABaMqiIDiprgaV8C4ErzQTJvKYckbPTccwsL4Q9l0I6wthQyEJLn_BW2823O__w84GbB2i8z9MCgSE5n2m6-FurHZ-w9-d7ySLfN85rz23wgRW_OnwCQM6gf0 |
| CitedBy_id | crossref_primary_10_1007_s00521_017_3215_1 crossref_primary_10_1080_10618600_2015_1121728 crossref_primary_10_1111_sjos_12775 crossref_primary_10_1109_ACCESS_2020_3041084 crossref_primary_10_1080_01621459_2018_1537917 crossref_primary_10_1214_17_EJS1365 crossref_primary_10_1021_acsami_4c01277 crossref_primary_10_1109_TPAMI_2015_2441063 crossref_primary_10_1007_s11009_022_09937_2 crossref_primary_10_1007_s10463_021_00808_0 crossref_primary_10_1214_23_EJS2115 crossref_primary_10_1587_transfun_E101_A_1334 |
| Cites_doi | 10.1080/01621459.1986.10478291 10.1007/978-0-387-21606-5 10.1287/opre.49.5.784.10601 10.1080/01621459.1997.10473609 10.1017/CBO9780511804441 10.1186/gb-2008-9-s1-s6 10.1111/j.2517-6161.1996.tb02080.x 10.1137/1.9781611970128 10.1007/BF02289565 10.1023/A:1023901806339 10.1016/0022-0000(80)90035-5 10.7551/mitpress/4175.001.0001 10.1137/S1052623497314970 10.1287/moor.11.4.699 10.1287/opre.33.6.1316 10.1214/11-AOAS504 10.1080/01621459.1972.10481216 10.1016/0022-0000(83)90006-5 10.1137/S0895480100369584 |
| ContentType | Journal Article |
| Copyright | 2014 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2014 2014 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America Copyright American Statistical Association 2014 |
| Copyright_xml | – notice: 2014 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2014 – notice: 2014 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America – notice: Copyright American Statistical Association 2014 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1080/10618600.2012.741550 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1537-2715 |
| EndPage | 210 |
| ExternalDocumentID | 3226118021 10_1080_10618600_2012_741550 43305721 741550 |
| Genre | Article Feature |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 2AX 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABQDR ABTAI ABXSQ ABXUL ABXYU ABYWD ACDIW ACGFO ACGFS ACHJO ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB ADODI ADULT ADXHL AEGXH AELLO AENEX AEOZL AEPSL AEUPB AEYOC AFRVT AFVYC AGDLA AGLNM AGMYJ AHDZW AIAGR AIHAF AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P GTTXZ H13 HF~ HQ6 HZ~ H~P IPNFZ IPSME J.P JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST KYCEM M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS UT5 UU3 WZA XWC ZGOLN ~S~ ADYSH AMPGV AAYXX CITATION JQ2 |
| ID | FETCH-LOGICAL-c357t-9b06d0e4fa914b4896de511c3d276bfc5caf7ad0ddc6ccbf7fbacfbf0c74a9e83 |
| ISSN | 1061-8600 |
| IngestDate | Wed Aug 13 07:27:23 EDT 2025 Wed Oct 01 06:31:23 EDT 2025 Thu Apr 24 23:02:12 EDT 2025 Fri May 30 11:49:08 EDT 2025 Mon Oct 20 23:39:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c357t-9b06d0e4fa914b4896de511c3d276bfc5caf7ad0ddc6ccbf7fbacfbf0c74a9e83 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| PQID | 1500943351 |
| PQPubID | 29738 |
| PageCount | 19 |
| ParticipantIDs | crossref_citationtrail_10_1080_10618600_2012_741550 proquest_journals_1500943351 jstor_primary_43305721 crossref_primary_10_1080_10618600_2012_741550 informaworld_taylorfrancis_310_1080_10618600_2012_741550 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-03-01 |
| PublicationDateYYYYMMDD | 2014-03-01 |
| PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Journal of computational and graphical statistics |
| PublicationYear | 2014 |
| Publisher | Taylor & Francis American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America – name: Taylor & Francis Ltd |
| References | cit0012 Wahba G. (cit0027) 1990 cit0010 Rosset S. (cit0019) 2004; 5 Schölkopf B. (cit0022) 2001 Hochbaum D.S. (cit0011) 2003; 16 Obozinski G. (cit0018) 2008; 9 Spouge M. (cit0024) 2003; 117 Ahuja R.K. (cit0001) 1993 Caruana R. (cit0006) 2000 Galil Z. (cit0009) 1980; 21 Luss R. (cit0014) 2012; 6 Zheng Z. (cit0028) 2008 cit0015 Tibshirani R. (cit0026) 1996; 58 Murty K. (cit0017) 1983 cit0023 cit0020 cit0021 cit0007 cit0004 cit0005 Luss R. (cit0013) 2010 cit0002 cit0003 |
| References_xml | – ident: cit0007 doi: 10.1080/01621459.1986.10478291 – ident: cit0010 doi: 10.1007/978-0-387-21606-5 – ident: cit0002 doi: 10.1287/opre.49.5.784.10601 – ident: cit0021 doi: 10.1080/01621459.1997.10473609 – ident: cit0005 doi: 10.1017/CBO9780511804441 – start-page: 1513–1521 volume-title: Proceeedings of the Neural Information Processing Systems Conference year: 2010 ident: cit0013 – volume-title: Network Flows: Theory, Algorithms, and Applications year: 1993 ident: cit0001 – start-page: 1108–1115 volume-title: Proceedings of the Forty-Sixth Annual Allerton Conference on Communication, Control, and Computing year: 2008 ident: cit0028 – volume-title: Linear Programming year: 1983 ident: cit0017 – volume: 9 start-page: 247 year: 2008 ident: cit0018 publication-title: Genome Biology doi: 10.1186/gb-2008-9-s1-s6 – volume: 58 start-page: 267 year: 1996 ident: cit0026 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume-title: Spline Models for Observational Data (CBMS-NSF Regional Conference Series in Applied Mathematics) year: 1990 ident: cit0027 doi: 10.1137/1.9781611970128 – ident: cit0012 doi: 10.1007/BF02289565 – volume: 117 start-page: 585 year: 2003 ident: cit0024 publication-title: Journal of Optimization Theory and Applications doi: 10.1023/A:1023901806339 – volume: 21 start-page: 203 year: 1980 ident: cit0009 publication-title: Journal of Computer and System Sciences doi: 10.1016/0022-0000(80)90035-5 – volume-title: Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond year: 2001 ident: cit0022 doi: 10.7551/mitpress/4175.001.0001 – ident: cit0004 doi: 10.1137/S1052623497314970 – start-page: 402–408 volume-title: Proceedings of the Neural Information Processing Systems Conference year: 2000 ident: cit0006 – volume: 5 start-page: 941 year: 2004 ident: cit0019 publication-title: Journal of Machine Learning Research – ident: cit0020 doi: 10.1287/moor.11.4.699 – ident: cit0015 doi: 10.1287/opre.33.6.1316 – volume: 6 start-page: 253 year: 2012 ident: cit0014 publication-title: Annals of Applied Statistics doi: 10.1214/11-AOAS504 – ident: cit0003 doi: 10.1080/01621459.1972.10481216 – ident: cit0023 doi: 10.1016/0022-0000(83)90006-5 – volume: 16 start-page: 192 year: 2003 ident: cit0011 publication-title: SIAM Journal on Discrete Mathematics doi: 10.1137/S0895480100369584 |
| SSID | ssj0001697 |
| Score | 2.2028017 |
| Snippet | We present a new computational and statistical approach for fitting isotonic models under convex differentiable loss functions through recursive partitioning.... |
| SourceID | proquest crossref jstor informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 192 |
| SubjectTerms | Algorithms Convex optimization Datasets Integers Isotonic solutions Isotonicity Iterative solutions Mathematical models Nonparametric regression Optimal solutions Outliers Regression analysis Regression Methods Regularization path Simulation training Software packages Studies Theorems |
| Title | Generalized Isotonic Regression |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10618600.2012.741550 https://www.jstor.org/stable/43305721 https://www.proquest.com/docview/1500943351 |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1537-2715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001697 issn: 1061-8600 databaseCode: AHDZW dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1537-2715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001697 issn: 1061-8600 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZW5VIOqBQqlhbYA1cXZ-04zhEhUEFqD0sr9Rb5CUgoi7rppQd-O-NnsmrL6xJFVmxHM-OZyeSbGYReG8lB81cWu8o2mDEncVsLg2tVGy24YCrkcZ-e8ZML9umyvpzNfk6zSwZ1rG_uzCv5H67CGPDVZ8n-A2fLojAA98BfuAKH4fpXPE41o7_dgNf4cbMeQjeblf0Ssa39PY6nDo0cchDQB85D1eqYH-nHQ-nmgtS5jm3VV-u-L-H3FZjW-Bfjs_wqr9JWKXhQsRE9NcHry9ArOK6-LRdRT01AC6ellqyvVVJeKSNNQxTTSdBIY1OoEPmY_oOaaFtwJrDghEzVcUw_3hK7qFur2DQvmellRMPesgARMulX9gt77N7yOHhNZLR4BYfIKKi7xtcheLAEq-Bbf1ByVix5lZrz5NfMqZeCvLlrgy3XZqvwbQa73jL4wYs530OPkhQs3kZZeoxmtt9HD0d6b_bR7kjwJ-jVRMQWWcQWo4g9RRcf3p-_O8GppwbWtG4G3CrCDbFwJtuKKSZabiz43JoaIIByutbSNdIQYzTXWrnGKamdckQ3TLZW0AO00697-wwtqBJgDiSsRStm26UUjFreSse5AS_YzRHN5Oh0Kjjv-55876pUlzYTsfNE7CIR5wiXWT9iwZU_PC-mlO6GEOhysStNR38_9SBwpeyTxWGOjjKbunTcNx18OXkULq2r5_fNO0S74yE7QjvD1bV9AT7roF4GwfoF0IaT4w |
| linkProvider | Taylor & Francis |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4hGICBN6K8moHVJakdxxkRoirQdkBFYrP8RAjUIpIu_HrsOKl4CJBgTs6W7-x7WJ-_AzjRgjrPnxhkE5MhQqxAeco0SmWqFaOMyOod93BE-7fk6i5t0IRFDav0NbQNRBGVr_aH219GN5C4U1_GMBepPTKr26lioqval1KX6_smBjgezZ1xUvdXcRLIizSv574Z5UN0-sBd2uAVv_jsKhD11kE2Swj4k8fOrJQd9fqJ3fFfa9yAtTpNjc7CvtqEBTPZgtXhnOO12IIVn6cGmudtaNf01Q-vRkeXxbT0jLvRjbkPMNvJDtz2LsbnfVT3XkAKp1mJchlTHRtnuzwhkrCcauNyM4V1N6PSqlQJmwkda62oUtJmVgplpY1VRkRuGN6Fxcl0YvYgwpI5tyHcWDghJu8KRrChubCUapct2RbgRudc1cTkvj_GE09q_tJGF9zrggddtADNpZ4DMccv_7P35uRldSFiQ_cSjn8W3a1MP5-HYOclXencgsNmL_D66BfcZdgerYnTZP_vU7ZhuT8eDvjgcnR9ACvuCwnAt0NYLF9m5shlQqU8rvb6Gx7r-A4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6kgujBd7E-e_Cauttks9mjqMVXi4iF3kKeIkpb7PbirzfZ7BarqKDn3SRkMpnH7jffABxrQZ3ljw2ysUkRIVagLGEaJTLRilFGZFHH3e3Ryz65HiSDD1X8Hlbpc2gbiCIKW-0v91jbChF34rMY5hy1B2a1W4VLdEn7IvU_xXwRR9Sb2eK4bK_iRiA_pCqe-2aWOec0R11awRW_mOzCD3XWQFQ7CPCT59Y0ly319onc8T9bXIfVMkhtngat2oAFM9yEle6M4XWyCcs-Sg0kz1twVJJXP70Z3byajHLPt9u8N48BZDvchn7n4uHsEpWdF5DCSZqjTEZUR8adXBYTSVhGtXGRmcK6nVJpVaKETYWOtFZUKWlTK4Wy0kYqJSIzDNehNhwNzQ40sWTOaAg3F46JydqCEWxoJiyl2sVKtgG4EjlXJS25747xwuOSvbSSBfey4EEWDUCzUeNAy_HL--zjafK8-BxiQ-8Sjn8eWi9OfrYOwc5GusS5AfuVKvDy4k-4i689VtNp4u7flzyCpbvzDr-96t3swbJ7QALqbR9q-evUHLgwKJeHhaa_AwkQ9rI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Isotonic+Regression&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Luss%2C+Ronny&rft.au=Rosset%2C+Saharon&rft.date=2014-03-01&rft.pub=American+Statistical+Association%2C+Institute+of+Mathematical+Statistics%2C+and+Interface+Foundation+of+North+America&rft.issn=1061-8600&rft.volume=23&rft.issue=1&rft.spage=192&rft.epage=210&rft_id=info:doi/10.1080%2F10618600.2012.741550&rft.externalDocID=43305721 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |