Generalized Isotonic Regression

We present a new computational and statistical approach for fitting isotonic models under convex differentiable loss functions through recursive partitioning. Models along the partitioning path are also isotonic and can be viewed as regularized solutions to the problem. Our approach generalizes and...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and graphical statistics Vol. 23; no. 1; pp. 192 - 210
Main Authors Luss, Ronny, Rosset, Saharon
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 01.03.2014
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1061-8600
1537-2715
DOI10.1080/10618600.2012.741550

Cover

More Information
Summary:We present a new computational and statistical approach for fitting isotonic models under convex differentiable loss functions through recursive partitioning. Models along the partitioning path are also isotonic and can be viewed as regularized solutions to the problem. Our approach generalizes and subsumes the well-known work of Barlow and Brunk on fitting isotonic regressions subject to specially structured loss functions, and expands the range of loss functions that can be used (e.g., adding Huber loss for robust regression). This is accomplished through an algorithmic adjustment to a recursive partitioning approach recently developed for solving large-scale ł 2 -loss isotonic regression problems. We prove that the new algorithm solves the generalized problem while maintaining the favorable computational and statistical properties of the l 2 algorithm. The results are demonstrated on both real and synthetic data in two settings: fitting count data using negative Poisson log-likelihood loss, and fitting robust isotonic regressions using Huber loss. Proofs of theorems and a MATLAB-based software package implementing our algorithm are available in the online supplementary materials.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:1061-8600
1537-2715
DOI:10.1080/10618600.2012.741550