DDM: Fast Near-Optimal Multi-Robot Path Planning Using Diversified-Path and Optimal Sub-Problem Solution Database Heuristics
We propose a novel centralized and decoupled algorithm, DDM, for solving multi-robot path planning problems in grid graphs, targeting on-demand and automated warehouse-like settings. Two settings are studied: a traditional one whose objective is to move a set of robots from their respective initial...
Saved in:
| Published in | IEEE robotics and automation letters Vol. 5; no. 2; pp. 1349 - 1356 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2377-3766 2377-3766 |
| DOI | 10.1109/LRA.2020.2967326 |
Cover
| Summary: | We propose a novel centralized and decoupled algorithm, DDM, for solving multi-robot path planning problems in grid graphs, targeting on-demand and automated warehouse-like settings. Two settings are studied: a traditional one whose objective is to move a set of robots from their respective initial vertices to the goal vertices as quickly as possible, and a dynamic one which requires frequent re-planning to accommodate for goal configuration adjustments. Among other techniques, DDM is mainly enabled through exploiting two innovative heuristics: path diversification and optimal sub-problem solution databases. The two heuristics attack two distinct phases of a decoupling-based planner: while path diversification allows the more effective use of the entire workspace for robot travel, optimal sub-problem solution databases facilitate the fast resolution of local path conflicts. Extensive evaluation demonstrates that DDM achieves high levels of scalability and solution quality close to the optimum. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2377-3766 2377-3766 |
| DOI: | 10.1109/LRA.2020.2967326 |