High Endurance Ferroelectric Hafnium Oxide-Based FeFET Memory Without Retention Penalty

We report the integration of a ferroelectric (FE) silicon-doped hafnium oxide material in ferroelectric field-effect transistor (FeFET) devices fabricated with an optimized interfacial layer in a gate-first scheme. The effect of increasing the permittivity (k) value of the interface layer on the per...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 65; no. 9; pp. 3769 - 3774
Main Authors Ali, T., Polakowski, P., Riedel, S., Buttner, T., Kampfe, T., Rudolph, M., Patzold, B., Seidel, K., Lohr, D., Hoffmann, R., Czernohorsky, M., Kuhnel, K., Steinke, P., Calvo, J., Zimmermann, K., Muller, J.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9383
1557-9646
DOI10.1109/TED.2018.2856818

Cover

More Information
Summary:We report the integration of a ferroelectric (FE) silicon-doped hafnium oxide material in ferroelectric field-effect transistor (FeFET) devices fabricated with an optimized interfacial layer in a gate-first scheme. The effect of increasing the permittivity (k) value of the interface layer on the performance of the metal-ferroelectric-insulator-semiconductor (MFIS)-FE-HfO 2 FeFET is studied in terms of its switching characteristics, endurance, and retention. In contrast to the previous work, the FE Si:HfO 2 -integrated FeFET devices show a low-power operation capability as well as an improved endurance characteristics without jeopardizing high-temperature retention. The utilization of an optimized SiON interface layer for MFIS-HfO 2 FeFET stack is discussed, and the improvements are outlined with reference to a standard low-k SiO 2 interface.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2018.2856818