Computation Offloading and Resource Allocation For Cloud Assisted Mobile Edge Computing in Vehicular Networks

Computation offloading services provide required computing resources for vehicles with computation-intensive tasks. Past computation offloading research mainly focused on mobile edge computing (MEC) or cloud computing, separately. This paper presents a collaborative approach based on MEC and cloud c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 68; no. 8; pp. 7944 - 7956
Main Authors Zhao, Junhui, Li, Qiuping, Gong, Yi, Zhang, Ke
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2019.2917890

Cover

More Information
Summary:Computation offloading services provide required computing resources for vehicles with computation-intensive tasks. Past computation offloading research mainly focused on mobile edge computing (MEC) or cloud computing, separately. This paper presents a collaborative approach based on MEC and cloud computing that offloads services to automobiles in vehicular networks. A cloud-MEC collaborative computation offloading problem is formulated through jointly optimizing computation offloading decision and computation resource allocation. Since the problem is non-convex and NP-hard, we propose a collaborative computation offloading and resource allocation optimization (CCORAO) scheme, and design a distributed computation offloading and resource allocation algorithm for CCORAO scheme that achieves the optimal solution. The simulation results show that the proposed algorithm can effectively improve the system utility and computation time, especially for the scenario where the MEC servers fail to meet demands due to insufficient computation resources.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2019.2917890