Computation Offloading and Resource Allocation For Cloud Assisted Mobile Edge Computing in Vehicular Networks
Computation offloading services provide required computing resources for vehicles with computation-intensive tasks. Past computation offloading research mainly focused on mobile edge computing (MEC) or cloud computing, separately. This paper presents a collaborative approach based on MEC and cloud c...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 68; no. 8; pp. 7944 - 7956 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9545 1939-9359 |
DOI | 10.1109/TVT.2019.2917890 |
Cover
Summary: | Computation offloading services provide required computing resources for vehicles with computation-intensive tasks. Past computation offloading research mainly focused on mobile edge computing (MEC) or cloud computing, separately. This paper presents a collaborative approach based on MEC and cloud computing that offloads services to automobiles in vehicular networks. A cloud-MEC collaborative computation offloading problem is formulated through jointly optimizing computation offloading decision and computation resource allocation. Since the problem is non-convex and NP-hard, we propose a collaborative computation offloading and resource allocation optimization (CCORAO) scheme, and design a distributed computation offloading and resource allocation algorithm for CCORAO scheme that achieves the optimal solution. The simulation results show that the proposed algorithm can effectively improve the system utility and computation time, especially for the scenario where the MEC servers fail to meet demands due to insufficient computation resources. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9545 1939-9359 |
DOI: | 10.1109/TVT.2019.2917890 |