On the Duality Between Network Flows and Network Lasso

Many applications generate data with an intrinsic network structure such as time series data, image data or social network data. The network Lasso (nLasso) has been proposed recently as a method for joint clustering and optimization of machine learning models for networked data. The nLasso extends t...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 27; pp. 940 - 944
Main Author Jung, Alexander
Format Journal Article
LanguageEnglish
Published New York IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1070-9908
1558-2361
DOI10.1109/LSP.2020.2998400

Cover

More Information
Summary:Many applications generate data with an intrinsic network structure such as time series data, image data or social network data. The network Lasso (nLasso) has been proposed recently as a method for joint clustering and optimization of machine learning models for networked data. The nLasso extends the Lasso from sparse linear models to clustered graph signals. This paper explores the duality of nLasso and network flow optimization. We show that, in a very precise sense, nLasso is equivalent to a minimum-cost flow problem on the data network structure. Our main technical result is a concise characterization of nLasso solutions via the existence of certain network flows. The main conceptual result is a useful link between nLasso methods and basic graph algorithms such as clustering or maximum flow.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2020.2998400