Spectrally Precoded DFT-Based OFDM and OFDMA With Oversampling
Spectrally precoded orthogonal frequency-division multiplexing (SP-OFDM) and SP-OFDM multiple access (SP-OFDMA) are bandwidth-efficient rectangularly pulsed multicarrier signaling formats that can provide power spectral sidelobes decaying asymptotically as f -2L-2 , with L being a preassigned positi...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 63; no. 6; pp. 2769 - 2783 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.07.2014
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9545 1939-9359 |
DOI | 10.1109/TVT.2013.2292877 |
Cover
Summary: | Spectrally precoded orthogonal frequency-division multiplexing (SP-OFDM) and SP-OFDM multiple access (SP-OFDMA) are bandwidth-efficient rectangularly pulsed multicarrier signaling formats that can provide power spectral sidelobes decaying asymptotically as f -2L-2 , with L being a preassigned positive-integer design parameter, which results in a compact spectrum. The existing spectral precoders for SP-OFDM and SP-OFDMA are designed based on the rectangularly pulsed analog multicarrier waveform representation that has an unlimited power spectrum; thus, the corresponding waveforms cannot be exactly synthesized in a discrete Fourier transform (DFT) structure. Consequently, these spectral precoders are subject to modification in DFT-based OFDMA and OFDM systems in which signaling waveforms are digitally synthesized with the use of DFT and provide discrete approximation embodiments to analog multicarrier waveform counterparts. In this paper, a general constraint on spectral precoding and the corresponding spectral precoders are developed for DFT-based OFDMA and OFDM with oversampling to ensure the desirable spectral property that the resultant spectrally precoded DFT-based waveforms provide powerspectral-sidelobe envelope bounds decaying asymptotically as f -2L-2 . It is analytically shown that the precoders suitable to DFT-based waveforms can be simply obtained by properly transforming the previously designed precoders suitable to corresponding analog multicarrier waveforms with an appropriate diagonal phase-rotation matrix, while yielding similar spectral performance and peak-to-average power ratio (PAPR) characteristics. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0018-9545 1939-9359 |
DOI: | 10.1109/TVT.2013.2292877 |