Solving Problems With Over One Billion Unknowns by the MLFMA

Using OpenMP to further accelerate the pure MPI parallel MLFMA, an efficient and flexible parallel multilevel fast multipole algorithm (MPI-OpenMP-MLFMA) is proposed. Compared with previous MPI parallel schemes, the MPI-OpenMP-MLFMA improves the load-balance and scalability greatly. The computationa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 60; no. 5; pp. 2571 - 2574
Main Authors Pan, Xiao-Min, Pi, Wei-Chao, Yang, Ming-Lin, Peng, Zhen, Sheng, Xin-Qing
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.05.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-926X
1558-2221
DOI10.1109/TAP.2012.2189746

Cover

More Information
Summary:Using OpenMP to further accelerate the pure MPI parallel MLFMA, an efficient and flexible parallel multilevel fast multipole algorithm (MPI-OpenMP-MLFMA) is proposed. Compared with previous MPI parallel schemes, the MPI-OpenMP-MLFMA improves the load-balance and scalability greatly. The computational capability of the proposed MPI-OpenMP-MLFMA is demonstrated by computing scattering from two extremely large targets: a sphere with a diameter of 1200 wavelengths, modeled by 1,063,706,700 unknowns, and an airplane model with the largest dimension of 1600 wavelengths, involving 288,151,344 unknowns.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2012.2189746