Exponentially convex functions generated by Wulbert’s inequality and Stolarsky-type means
Let −∞<a<b<∞. If f is concave on [a,b] and ψ′ is convex on the interval of integration, then Wulbert proved that 1δ+−δ−∫δ−δ+ψ(u)du≥1b−a∫abψ(f(x))dx, where δ−=f̄−3(‖f‖22−(f̄)2)1/2, δ+=f̄+3(‖f‖22−(f̄)2)1/2, f̄=1b−a∫abf(x)dx and ‖f‖p=(1b−a∫ab|f(x)|pdx)1/p. We define new Cauchy type means using...
Saved in:
Published in | Mathematical and computer modelling Vol. 55; no. 7-8; pp. 1849 - 1857 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0895-7177 1872-9479 |
DOI | 10.1016/j.mcm.2011.11.032 |
Cover
Summary: | Let −∞<a<b<∞. If f is concave on [a,b] and ψ′ is convex on the interval of integration, then Wulbert proved that 1δ+−δ−∫δ−δ+ψ(u)du≥1b−a∫abψ(f(x))dx, where δ−=f̄−3(‖f‖22−(f̄)2)1/2, δ+=f̄+3(‖f‖22−(f̄)2)1/2, f̄=1b−a∫abf(x)dx and ‖f‖p=(1b−a∫ab|f(x)|pdx)1/p. We define new Cauchy type means using a functional defined via above inequality and give some related results as applications. |
---|---|
Bibliography: | http://dx.doi.org/10.1016/j.mcm.2011.11.032 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0895-7177 1872-9479 |
DOI: | 10.1016/j.mcm.2011.11.032 |