High-throughput theoretical design of lithium battery materials
The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is re- viewed, including fiigh-capacity cathodes, low-strain cathodes, anodes, solid state eleclrolytes, and electrolyte additives. With tfie development of efficient theoretical methods and i...
Saved in:
Published in | Chinese physics B Vol. 25; no. 1; pp. 97 - 105 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.01.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/25/1/018208 |
Cover
Summary: | The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is re- viewed, including fiigh-capacity cathodes, low-strain cathodes, anodes, solid state eleclrolytes, and electrolyte additives. With tfie development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new malerials. With the help of automatic simnlation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve perlbmmnce, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed. |
---|---|
Bibliography: | lithium battery materials, high-throughput calculations, density functional theory, virtual screen- ing The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is re- viewed, including fiigh-capacity cathodes, low-strain cathodes, anodes, solid state eleclrolytes, and electrolyte additives. With tfie development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new malerials. With the help of automatic simnlation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve perlbmmnce, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed. 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/25/1/018208 |