Adaptive Reduced-Rank Constrained Constant Modulus Algorithms Based on Joint Iterative Optimization of Filters for Beamforming
This paper proposes a robust reduced-rank scheme for adaptive beamforming based on joint iterative optimization (JIO) of adaptive filters. The novel scheme is designed according to the constant modulus (CM) criterion subject to different constraints. The proposed scheme consists of a bank of full-ra...
        Saved in:
      
    
          | Published in | IEEE transactions on signal processing Vol. 58; no. 6; pp. 2983 - 2997 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York, NY
          IEEE
    
        01.06.2010
     Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1053-587X 1941-0476  | 
| DOI | 10.1109/TSP.2010.2044250 | 
Cover
| Summary: | This paper proposes a robust reduced-rank scheme for adaptive beamforming based on joint iterative optimization (JIO) of adaptive filters. The novel scheme is designed according to the constant modulus (CM) criterion subject to different constraints. The proposed scheme consists of a bank of full-rank adaptive filters that forms the transformation matrix, and an adaptive reduced-rank filter that operates at the output of the bank of filters to estimate the desired signal. We describe the proposed scheme for both the direct-form processor (DFP) and the generalized sidelobe canceller (GSC) structures. For each structure, we derive stochastic gradient (SG) and recursive least squares (RLS) algorithms for its adaptive implementation. The Gram-Schmidt (GS) technique is applied to the adaptive algorithms for reformulating the transformation matrix and improving the performance. An automatic rank selection technique is developed and employed to determine the most adequate rank for the derived algorithms. A detailed complexity study and a convexity analysis are carried out. Simulation results show that the proposed algorithms outperform the existing full-rank and reduced-rank methods in convergence and tracking performance. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23  | 
| ISSN: | 1053-587X 1941-0476  | 
| DOI: | 10.1109/TSP.2010.2044250 |