Lattice Waves in Two-Dimensional Hexagonal Quantum Plasma Crystals
Lattice waves including a longitudinal wave and a transverse wave in two-dimensional hexagonal quantum plasma crystals are investigated by using the modified Debye-Hückel screening potential. It is shown that there exists an unstable region of lattice parameters, where the system will melt. The gene...
Saved in:
Published in | Chinese physics letters Vol. 27; no. 2; pp. 184 - 186 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.02.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0256-307X 1741-3540 |
DOI | 10.1088/0256-307X/27/2/025204 |
Cover
Summary: | Lattice waves including a longitudinal wave and a transverse wave in two-dimensional hexagonal quantum plasma crystals are investigated by using the modified Debye-Hückel screening potential. It is shown that there exists an unstable region of lattice parameters, where the system will melt. The general dispersion relations are derived, and the waves propagating parallel to a primitive translation vector are discussed. We find that both the longitudinal and transverse waves are acoustic-like, and the longitudinal wave has a greater sound speed than that of the transverse wave in the long wavelength limit region. |
---|---|
Bibliography: | 11-1959/O4 TN304.26 TN304.6 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0256-307X 1741-3540 |
DOI: | 10.1088/0256-307X/27/2/025204 |