Efficient Adaptive Nonlinear Filters for Nonlinear Active Noise Control

In this paper, we treat nonlinear active noise control (NANC) with a linear secondary path (LSP) and with a nonlinear secondary path (NSP) in a unified structure by introducing a new virtual secondary path filter concept and using a general function expansion nonlinear filter. We discover that using...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems. I, Regular papers Vol. 54; no. 3; pp. 669 - 681
Main Authors Dayong Zhou, DeBrunner, V.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1549-8328
1558-0806
DOI10.1109/TCSI.2006.887636

Cover

More Information
Summary:In this paper, we treat nonlinear active noise control (NANC) with a linear secondary path (LSP) and with a nonlinear secondary path (NSP) in a unified structure by introducing a new virtual secondary path filter concept and using a general function expansion nonlinear filter. We discover that using the filtered-error structure results in greatly reducing the computational complexity of NANC. As a result, we extend the available filtered-error-based algorithms to solve NANC/LSP problems and, furthermore, develop our adjoint filtered-error-based algorithms for NANC/NSP. This family of algorithms is computationally efficient and possesses a simple structure. We also find that the computational complexity of NANC/NSP can be reduced even more using block-oriented nonlinear models, such as the Wiener, Hammerstein, or linear-nonlinear-linear (LNL) models for the NSP. Finally, we use the statistical properties of the virtual secondary path and the robustness of our proposed methods to further reduce the computational complexity and simplify the implementation structure of NANC/NSP when the NSP satisfies certain conditions. Computational complexity and simulation results are given to confirm the efficiency and effectiveness of all of our proposed methods
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2006.887636