Make deep learning algorithms in computational pathology more reproducible and reusable

Greater emphasis on reproducibility and reusability will advance computational pathology quickly and sustainably, ultimately optimizing clinical workflows and benefiting patient health.

Saved in:
Bibliographic Details
Published inNature medicine Vol. 28; no. 9; pp. 1744 - 1746
Main Authors Wagner, Sophia J., Matek, Christian, Shetab Boushehri, Sayedali, Boxberg, Melanie, Lamm, Lorenz, Sadafi, Ario, Waibel, Dominik J. E., Marr, Carsten, Peng, Tingying
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.09.2022
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1078-8956
1546-170X
1546-170X
DOI10.1038/s41591-022-01905-0

Cover

More Information
Summary:Greater emphasis on reproducibility and reusability will advance computational pathology quickly and sustainably, ultimately optimizing clinical workflows and benefiting patient health.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1078-8956
1546-170X
1546-170X
DOI:10.1038/s41591-022-01905-0