Forecasting the Yellow River runoff based on functional data analysis methods
This study examines the runoff prediction of each hydrometric station and each month in the mainstream of the Yellow River in China. From the perspective of functional data, the monthly runoff of each hydrometric station can be regarded as a function of both time and space. A sequence of such functi...
Saved in:
Published in | Environmental and ecological statistics Vol. 28; no. 1; pp. 1 - 20 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1352-8505 1573-3009 |
DOI | 10.1007/s10651-020-00469-x |
Cover
Summary: | This study examines the runoff prediction of each hydrometric station and each month in the mainstream of the Yellow River in China. From the perspective of functional data, the monthly runoff of each hydrometric station can be regarded as a function of both time and space. A sequence of such functions is formed by collecting the data over the years. We propose a new approach by combining the two-dimensional functional principal component analysis (FPCA) and time series analysis methods to predict the runoff. In the simulation, we compared the proposed method with two others: one based on one-dimensional FPCA and the seasonal auto-regressive integrated moving average (SARIMA) method. The method combining standard two-dimensional FPCA and time series analysis outperforms others in most cases, and is used to predict the runoff of each hydrometric station and each month in the Yellow River in 2018. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1352-8505 1573-3009 |
DOI: | 10.1007/s10651-020-00469-x |