Comparison and Selection of Spike Encoding Algorithms for SNN on FPGA

The information in Spiking Neural Networks (SNNs) is carried by discrete spikes. Therefore, the conversion between the spiking signals and real-value signals has an important impact on the encoding efficiency and performance of SNNs, which is usually completed by spike encoding algorithms. In order...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 17; no. 1; pp. 129 - 141
Main Authors Wang, Kuanchuan, Hao, Xinyu, Wang, Jiang, Deng, Bin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-4545
1940-9990
1940-9990
DOI10.1109/TBCAS.2023.3238165

Cover

Abstract The information in Spiking Neural Networks (SNNs) is carried by discrete spikes. Therefore, the conversion between the spiking signals and real-value signals has an important impact on the encoding efficiency and performance of SNNs, which is usually completed by spike encoding algorithms. In order to select suitable spike encoding algorithms for different SNNs, this work evaluates four commonly used spike encoding algorithms. The evaluation is based on the FPGA implementation results of the algorithms, including calculation speed, resource consumption, accuracy, and anti-noiseability, so as to better adapt to the neuromorphic implementation of SNN. Two real-world applicaitons are also used to verify the evaluation results. By analyzing and comparing the evaluation results, this work summarizes the characteristics and application range of different algorithms. In general, the sliding window algorithm has relatively low accuracy and is suitable for observing signal trends. Pulsewidth modulated-Based algorithm and step-forward algorithm are suitable for accurate reconstruction of various signals except for square wave signals, while Ben's Spiker algorithm can remedy this. Finally, a scoring method that can be used for spiking coding algorithm selection is proposed, which can help to improve the encoding efficiency of neuromorphic SNNs.
AbstractList The information in Spiking Neural Networks (SNNs) is carried by discrete spikes. Therefore, the conversion between the spiking signals and real-value signals has an important impact on the encoding efficiency and performance of SNNs, which is usually completed by spike encoding algorithms. In order to select suitable spike encoding algorithms for different SNNs, this work evaluates four commonly used spike encoding algorithms. The evaluation is based on the FPGA implementation results of the algorithms, including calculation speed, resource consumption, accuracy, and anti-noiseability, so as to better adapt to the neuromorphic implementation of SNN. Two real-world applicaitons are also used to verify the evaluation results. By analyzing and comparing the evaluation results, this work summarizes the characteristics and application range of different algorithms. In general, the sliding window algorithm has relatively low accuracy and is suitable for observing signal trends. Pulsewidth modulated-Based algorithm and step-forward algorithm are suitable for accurate reconstruction of various signals except for square wave signals, while Ben's Spiker algorithm can remedy this. Finally, a scoring method that can be used for spiking coding algorithm selection is proposed, which can help to improve the encoding efficiency of neuromorphic SNNs.
The information in Spiking Neural Networks (SNNs) is carried by discrete spikes. Therefore, the conversion between the spiking signals and real-value signals has an important impact on the encoding efficiency and performance of SNNs, which is usually completed by spike encoding algorithms. In order to select suitable spike encoding algorithms for different SNNs, this work evaluates four commonly used spike encoding algorithms. The evaluation is based on the FPGA implementation results of the algorithms, including calculation speed, resource consumption, accuracy, and anti-noiseability, so as to better adapt to the neuromorphic implementation of SNN. Two real-world applicaitons are also used to verify the evaluation results. By analyzing and comparing the evaluation results, this work summarizes the characteristics and application range of different algorithms. In general, the sliding window algorithm has relatively low accuracy and is suitable for observing signal trends. Pulsewidth modulated-Based algorithm and step-forward algorithm are suitable for accurate reconstruction of various signals except for square wave signals, while Ben's Spiker algorithm can remedy this. Finally, a scoring method that can be used for spiking coding algorithm selection is proposed, which can help to improve the encoding efficiency of neuromorphic SNNs.The information in Spiking Neural Networks (SNNs) is carried by discrete spikes. Therefore, the conversion between the spiking signals and real-value signals has an important impact on the encoding efficiency and performance of SNNs, which is usually completed by spike encoding algorithms. In order to select suitable spike encoding algorithms for different SNNs, this work evaluates four commonly used spike encoding algorithms. The evaluation is based on the FPGA implementation results of the algorithms, including calculation speed, resource consumption, accuracy, and anti-noiseability, so as to better adapt to the neuromorphic implementation of SNN. Two real-world applicaitons are also used to verify the evaluation results. By analyzing and comparing the evaluation results, this work summarizes the characteristics and application range of different algorithms. In general, the sliding window algorithm has relatively low accuracy and is suitable for observing signal trends. Pulsewidth modulated-Based algorithm and step-forward algorithm are suitable for accurate reconstruction of various signals except for square wave signals, while Ben's Spiker algorithm can remedy this. Finally, a scoring method that can be used for spiking coding algorithm selection is proposed, which can help to improve the encoding efficiency of neuromorphic SNNs.
Author Hao, Xinyu
Deng, Bin
Wang, Jiang
Wang, Kuanchuan
Author_xml – sequence: 1
  givenname: Kuanchuan
  orcidid: 0000-0003-2313-9083
  surname: Wang
  fullname: Wang, Kuanchuan
  email: wangkc@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Xinyu
  surname: Hao
  fullname: Hao, Xinyu
  email: haoxy@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Jiang
  orcidid: 0000-0002-2189-8003
  surname: Wang
  fullname: Wang, Jiang
  email: jiangwang@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 4
  givenname: Bin
  orcidid: 0000-0002-8094-8656
  surname: Deng
  fullname: Deng, Bin
  email: dengbin@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37021893$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAQhoMo6qp_QEQKXrx0TSbNtjmuy_oBosLqOaTpVKNtsybdg__e1F1BPHiaBJ5neJl3RLY71yEhx4yOGaPy4ulyNl2MgQIfc-AFm4gtss9kRlMpJd0e3hzSTGRij4xCeKNUTEDCLtnjOQVWSL5P5jPXLrW3wXWJ7qpkgQ2a3safq5PF0r5jMu-Mq2z3kkybF-dt_9qGpHY-WdzfJ5G7eryeHpKdWjcBjzbzgDxfzZ9mN-ndw_XtbHqXGi6gTzWWEkBMeFUhaM1qisLowoAxJZZGYJ4LEJWkJsYUOcsmIDQWJc8rpos4D8j5eu_Su48Vhl61NhhsGt2hWwUFuYyWoEUW0bM_6Jtb-S6mGygOjDIGkTrdUKuyxUotvW21_1Q_B4pAsQaMdyF4rJWxvR4O1HttG8WoGrpQ312ooQu16SKq8Ef92f6vdLKWLCL-EoY4ecG_ALHUkkE
CODEN ITBCCW
CitedBy_id crossref_primary_10_1016_j_neunet_2025_107256
Cites_doi 10.1109/IJCNN48605.2020.9207702
10.1109/TNNLS.2019.2906158
10.1016/j.neunet.2015.09.011
10.3390/s120403831
10.1109/TNNLS.2019.2947380
10.3390/asi3020028
10.1016/j.neucom.2015.08.078
10.1007/978-3-319-27212-2_9
10.1142/S0129065714500026
10.1007/978-3-642-24955-6_54
10.1007/978-3-642-30687-7_12
10.1109/TIE.2016.2606089
10.1109/TIE.2014.2356439
10.1016/j.neunet.2019.09.037
10.1113/jphysiol.1926.sp002281
10.1016/j.neunet.2019.09.036
10.3389/fnsys.2015.00151
10.1162/08997660152002852
10.1007/s11063-021-10562-2
10.3389/fnins.2021.638474
10.1016/j.neucom.2016.09.093
10.1109/CCDC.2019.8832709
10.1109/TCSI.2004.835026
10.1007/s11042-019-7314-0
10.1109/TNNLS.2015.2388544
10.1016/j.neunet.2004.01.002
10.1109/TIE.2020.3001853
10.1016/j.robot.2018.02.010
10.1007/978-3-642-24965-5_28
10.1109/tnnls.2021.3111897
10.1109/IJCNN.2003.1224019
10.1142/S012906571000253X
10.1609/aaai.v33i01.33011311
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
DOI 10.1109/TBCAS.2023.3238165
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1940-9990
EndPage 141
ExternalDocumentID 37021893
10_1109_TBCAS_2023_3238165
10021878
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62071324; 62171311
  funderid: 10.13039/501100001809
GroupedDBID ---
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
ID FETCH-LOGICAL-c352t-aeb922563dde2aa1f0e5ca8c2ccbebc5e77525d90c2925714625ae8b37d1a88b3
IEDL.DBID RIE
ISSN 1932-4545
1940-9990
IngestDate Thu Oct 02 19:28:03 EDT 2025
Mon Jun 30 08:31:45 EDT 2025
Sun Apr 06 01:21:17 EDT 2025
Wed Oct 01 04:06:02 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Wed Aug 27 02:49:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-aeb922563dde2aa1f0e5ca8c2ccbebc5e77525d90c2925714625ae8b37d1a88b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2313-9083
0000-0002-2189-8003
0000-0002-8094-8656
PMID 37021893
PQID 2793210112
PQPubID 85510
PageCount 13
ParticipantIDs proquest_miscellaneous_2797145084
pubmed_primary_37021893
crossref_primary_10_1109_TBCAS_2023_3238165
crossref_citationtrail_10_1109_TBCAS_2023_3238165
proquest_journals_2793210112
ieee_primary_10021878
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical circuits and systems
PublicationTitleAbbrev TBCAS
PublicationTitleAlternate IEEE Trans Biomed Circuits Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref37
ref14
ref36
Cattani (ref15) 2015
ref31
ref30
Fang (ref33)
ref11
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
Dayan (ref9) 2001
ref27
ref8
ref7
ref4
ref3
ref6
ref5
Miko (ref29) 2019
References_xml – ident: ref24
  doi: 10.1109/IJCNN48605.2020.9207702
– ident: ref23
  doi: 10.1109/TNNLS.2019.2906158
– year: 2015
  ident: ref15
  article-title: Phase-of-firing code
– ident: ref14
  doi: 10.1016/j.neunet.2015.09.011
– ident: ref20
  doi: 10.3390/s120403831
– ident: ref16
  doi: 10.1109/TNNLS.2019.2947380
– ident: ref28
  doi: 10.3390/asi3020028
– ident: ref19
  doi: 10.1016/j.neucom.2015.08.078
– ident: ref18
  doi: 10.1007/978-3-319-27212-2_9
– ident: ref5
  doi: 10.1142/S0129065714500026
– ident: ref12
  doi: 10.1007/978-3-642-24955-6_54
– ident: ref13
  doi: 10.1007/978-3-642-30687-7_12
– ident: ref27
  doi: 10.1109/TIE.2016.2606089
– ident: ref2
  doi: 10.1109/TIE.2014.2356439
– ident: ref26
  doi: 10.1016/j.neunet.2019.09.037
– ident: ref8
  doi: 10.1113/jphysiol.1926.sp002281
– ident: ref1
  doi: 10.1016/j.neunet.2019.09.036
– ident: ref7
  doi: 10.3389/fnsys.2015.00151
– volume-title: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems
  year: 2001
  ident: ref9
– ident: ref17
  doi: 10.1162/08997660152002852
– ident: ref22
  doi: 10.1007/s11063-021-10562-2
– ident: ref25
  doi: 10.3389/fnins.2021.638474
– ident: ref6
  doi: 10.1016/j.neucom.2016.09.093
– ident: ref32
  doi: 10.1109/CCDC.2019.8832709
– ident: ref37
  doi: 10.1109/TCSI.2004.835026
– ident: ref30
  doi: 10.1007/s11042-019-7314-0
– ident: ref21
  doi: 10.1109/TNNLS.2015.2388544
– ident: ref34
  doi: 10.1016/j.neunet.2004.01.002
– ident: ref31
  doi: 10.1109/TIE.2020.3001853
– ident: ref3
  doi: 10.1016/j.robot.2018.02.010
– ident: ref10
  doi: 10.1007/978-3-642-24965-5_28
– ident: ref35
  doi: 10.1109/tnnls.2021.3111897
– issue: 38
  volume-title: Proc. Eng. Comput. Sci. Res. Conf.
  year: 2019
  ident: ref29
  article-title: Brain-inspired spiking neural network for gas-based navigation
– ident: ref11
  doi: 10.1109/IJCNN.2003.1224019
– ident: ref4
  doi: 10.1142/S012906571000253X
– start-page: 1
  volume-title: Proc. IEEEACM Int. Conf. Comput. Aided Des.
  ident: ref33
  article-title: Encoding, model, and architecture: Systematic optimization for spiking neural network in FPGAs
– ident: ref36
  doi: 10.1609/aaai.v33i01.33011311
SSID ssj0056292
Score 2.3508217
Snippet The information in Spiking Neural Networks (SNNs) is carried by discrete spikes. Therefore, the conversion between the spiking signals and real-value signals...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129
SubjectTerms Algorithms
Approximation algorithms
Classification algorithms
Encoding
Field programmable gate array (FPGA)
Field programmable gate arrays
Firing pattern
Hardware
Neural coding
Neural networks
Neuromorphics
Pulse duration
Resource consumption
Software algorithms
spike encoding algorithms
Spiking
spiking neural network
Square waves
Title Comparison and Selection of Spike Encoding Algorithms for SNN on FPGA
URI https://ieeexplore.ieee.org/document/10021878
https://www.ncbi.nlm.nih.gov/pubmed/37021893
https://www.proquest.com/docview/2793210112
https://www.proquest.com/docview/2797145084
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1940-9990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056292
  issn: 1932-4545
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLeAJ3gYbMDWwaYg7Q219OPStI-3093QJE6TDiTeqnz4NgRrEfRe-Otnp-3pNIlpT61UN03sxP65iW2AL-hQakeeKjteIeH_IiwwT8NSxyZznA0l4QDnq3l-eTP6fitv-2B1HwuDiP7wGUZ86_fyXWNX_KvsIvEWSRXbsK2KvAvWGtQu2XFfAZkBCSfylkOETFxeXH-djBcRFwqPMjZRbEk2rJAvq_I6wvSWZrYP86GP3QGT-2jVmsi-_JW-8b8HcQBveswpxt0keQtbWL-DvY1MhIcwnazrEQpdO7Hw5XFIZqJZisXj3T2KaW0bNnRi_PCzebprf_1-FoR4xWI-F0Q3-_FtfAQ3s-n15DLsKyyEloBXG2o0JS3oPCMll2qdLGOUVhc2tdagsRKVkql0ZWyJuVKRVk2lxsJkyiW6oOsx7NRNjR9AGIKey6VRIySEZVAZZ5yLkQCJLnSW6wCSgeOV7dOPcxWMh8q7IXFZeSlVLKWql1IA5-t3HrvkG_-kPmJub1B2jA7gdJBs1S_Q5yolvUTeLqHNAM7Wj2lp8X6JrrFZeRoaMiHYUQDvuxmxbjxT3HiZfXzloyewy33rznefwk77tMJPBF9a89lP2z_sPOhM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLagHIADzxYCBQaJG0qa12yS43a1ywJthLRbqbdoHl6oWpKqzV749diTZLWq1KqnRIozmbFn7M-ZsQ3wBS1KZclTZcfLJ_yf-zmOYr9QoU4sZ0OJOMD5uBzNT9Ifp_K0D1Z3sTCI6A6fYcC3bi_fNmbNv8oOImeRsvwhPJJpmsouXGtQvGTJXQ1khiScylsOMTJhcbA8nIwXAZcKDxI2UmxLtuyQK6xyO8Z0tmb2HMqhl90Rk_Ng3erA_LuRwPHew3gBz3rUKcbdNHkJD7B-BU-3chG-hulkU5FQqNqKhSuQQ1ITzUosLs_OUUxr07CpE-OL383VWfvn77UgzCsWZSmIbvbr23gXTmbT5WTu9zUWfEPQq_UV6oKW9CghNRcrFa1ClEblJjZGozYSs0zG0hahIebKjPRqLBXmOslspHK67sFO3dT4FoQm8Lla6SxFwlgaM221tSESJFG5SkbKg2jgeGX6BORcB-Oico5IWFROShVLqeql5MHXzTuXXfqNO6l3mdtblB2jPdgfJFv1S_S6ikkzkb9LeNODz5vHtLh4x0TV2KwdDQ2ZMGzqwZtuRmwaTzJuvEje3fLRT_B4vjw-qo6-lz_fwxPuZ3faex922qs1fiAw0-qPbgr_Bz7t65k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+and+Selection+of+Spike+Encoding+Algorithms+for+SNN+on+FPGA&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Wang%2C+Kuanchuan&rft.au=Hao%2C+Xinyu&rft.au=Wang%2C+Jiang&rft.au=Deng%2C+Bin&rft.date=2023-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1932-4545&rft.eissn=1940-9990&rft.volume=17&rft.issue=1&rft.spage=129&rft_id=info:doi/10.1109%2FTBCAS.2023.3238165&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon