Comparison and Selection of Spike Encoding Algorithms for SNN on FPGA

The information in Spiking Neural Networks (SNNs) is carried by discrete spikes. Therefore, the conversion between the spiking signals and real-value signals has an important impact on the encoding efficiency and performance of SNNs, which is usually completed by spike encoding algorithms. In order...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 17; no. 1; pp. 129 - 141
Main Authors Wang, Kuanchuan, Hao, Xinyu, Wang, Jiang, Deng, Bin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-4545
1940-9990
1940-9990
DOI10.1109/TBCAS.2023.3238165

Cover

More Information
Summary:The information in Spiking Neural Networks (SNNs) is carried by discrete spikes. Therefore, the conversion between the spiking signals and real-value signals has an important impact on the encoding efficiency and performance of SNNs, which is usually completed by spike encoding algorithms. In order to select suitable spike encoding algorithms for different SNNs, this work evaluates four commonly used spike encoding algorithms. The evaluation is based on the FPGA implementation results of the algorithms, including calculation speed, resource consumption, accuracy, and anti-noiseability, so as to better adapt to the neuromorphic implementation of SNN. Two real-world applicaitons are also used to verify the evaluation results. By analyzing and comparing the evaluation results, this work summarizes the characteristics and application range of different algorithms. In general, the sliding window algorithm has relatively low accuracy and is suitable for observing signal trends. Pulsewidth modulated-Based algorithm and step-forward algorithm are suitable for accurate reconstruction of various signals except for square wave signals, while Ben's Spiker algorithm can remedy this. Finally, a scoring method that can be used for spiking coding algorithm selection is proposed, which can help to improve the encoding efficiency of neuromorphic SNNs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1932-4545
1940-9990
1940-9990
DOI:10.1109/TBCAS.2023.3238165