Sufficiently Informative Excitation for Estimation of Linear Responses Due to Sparse Scattering

In this paper, we are concerned with the identification of linear systems' impulse responses modeled as deterministic multipath channels. In the class of channels we study, we consider the effect of delays, Doppler shifts, and different angles of arrival and departure for each signal path. We e...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 59; no. 11; pp. 5353 - 5368
Main Authors Sharp, M., Scaglione, A., Johnson, C. R.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2011.2163399

Cover

More Information
Summary:In this paper, we are concerned with the identification of linear systems' impulse responses modeled as deterministic multipath channels. In the class of channels we study, we consider the effect of delays, Doppler shifts, and different angles of arrival and departure for each signal path. We explore the efficacy of techniques based on sparse signal recovery, which typically define a basis constructed using a finite quantization grid over the parameter space, and approximate the impulse response as a sparse linear combination over such basis. Our goal is to provide guidelines on the design of pilot sequences that are sufficiently informative (SI), i.e., those inputs that guarantee identifiability of system impulse responses that fit in the sparse model. Inputs that are SI provide minimal requirements for uniquely identifying the system response. However, a smaller class of inputs leads to good mean squared estimation error in the presence of noise and modeling errors, due to the finite precision of the parameter space quantization. To single out the class of robust designs, we provide a new metric, called localized coherence, in lieu of the so called mutual coherence, as a measure for ranking SI designs in terms of robustness to noise and to modeling errors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2011.2163399