A New Variational Approach to the Stability of Gravitational Systems

We consider the three dimensional gravitational Vlasov Poisson system which describes the mechanical state of a stellar system subject to its own gravity. A well-known conjecture in astrophysics is that the steady state solutions which are nonincreasing functions of their microscopic energy are nonl...

Full description

Saved in:
Bibliographic Details
Published inCommunications in mathematical physics Vol. 302; no. 1; pp. 161 - 224
Main Authors Lemou, Mohammed, Méhats, Florian, Raphaël, Pierre
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.02.2011
Springer
Springer Verlag
Subjects
Online AccessGet full text
ISSN0010-3616
1432-0916
DOI10.1007/s00220-010-1182-9

Cover

More Information
Summary:We consider the three dimensional gravitational Vlasov Poisson system which describes the mechanical state of a stellar system subject to its own gravity. A well-known conjecture in astrophysics is that the steady state solutions which are nonincreasing functions of their microscopic energy are nonlinearly stable by the flow. This was proved at the linear level by several authors based on the pioneering work by Antonov in 1961. Since then, standard variational techniques based on concentration compactness methods as introduced by P.-L. Lions in 1983 have led to the nonlinear stability of subclasses of stationary solutions of ground state type. In this paper, inspired by pioneering works from the physics litterature (MNRAS 241:15, 1989 ), (Mon. Not. R. Astr. Soc. 144:189–217, 1969 ), (Mon. Not. R. Ast. Soc. 223:623–646, 1988 ) we use the monotonicity of the Hamiltonian under generalized symmetric rearrangement transformations to prove that non increasing steady solutions are the local minimizer of the Hamiltonian under equimeasurable constraints, and extract compactness from suitable minimizing sequences. This implies the nonlinear stability of nonincreasing anisotropic steady states under radially symmetric perturbations.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-010-1182-9