A Between-Subject fNIRS-BCI Study on Detecting Self-Regulated Intention During Walking

Objective: Most BCI (brain-computer interface) studies have focused on detecting motion intention from a resting state. However, the dynamic regulation of two motion states, which usually happens in real life, is rarely studied. Besides, popular within-subject methods also require an extensive and t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 2; pp. 531 - 540
Main Authors Li, Chunguang, Su, Min, Xu, Jiacheng, Jin, Hedian, Sun, Lining
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2020.2965628

Cover

More Information
Summary:Objective: Most BCI (brain-computer interface) studies have focused on detecting motion intention from a resting state. However, the dynamic regulation of two motion states, which usually happens in real life, is rarely studied. Besides, popular within-subject methods also require an extensive and time-consuming learning stage when testing on a new subject. This paper proposed a method to discriminate dynamic gait- adjustment intention with strong adaptability for different subjects. Methods: Cerebral hemoglobin signals obtained from 30 subjects were studied to decode gait-adjustment intention. Cerebral hemoglobin information was recorded by using fNIRS (functional near infrared spectroscopy) technology. Mathematical morphology filtering was applied to remove zero drift and EWM (Entropy Weight Method) was used to calculate the average hemoglobin values over Regions of Interest (ROIs). The gradient boosting decision tree (GBDT) was utilized to detect the onset of self-regulated intention. A 2-layer-GA-SVM (Genetic Algorithm-Support Vector Machine) model based on stacking algorithm was further proposed to identify the four types of self-regulated intention (speed increase, speed reduction, step increase, and step reduction). Results: It was found that GBDT had a good performance to detect the onset intention with an average AUC (Area Under Curve) of 0.894. The 2-layer-GA-SVM model boosted the average ACC (accuracy) of four types of intention from 70.6% to 84.4% ({p} =0.005 ) from the single GA-SVM model. Furthermore, the proposed method passed pseudo-online test with the average results as following: AUC = 0.883, TPR (True Positive Rate) = 97.5%, FPR (False Positive Rate) = 0.11%, and LAY (Detection Latency) = -0.52 ± 2.57 seconds for the recognition of gait-adjustment intention; ACC = 80% for the recognition of adjusted gait. Conclusion: The results indicate that it is feasible to decode dynamic gait-adjustment intentions from a motion state for different subjects based on fNIRS technology. It has a potential to realize the practical application of fNIRS-based brain-computer interface technology in controlling walking-assistive devices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2020.2965628