Performance Evaluation of Probabilistic Methods Based on Bootstrap and Quantile Regression to Quantify PV Power Point Forecast Uncertainty

This paper presents two probabilistic approaches based on bootstrap method and quantile regression (QR) method to estimate the uncertainty associated with solar photovoltaic (PV) power point forecasts. Solar PV output power forecasts are obtained using a hybrid intelligent model, which is composed o...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 31; no. 4; pp. 1134 - 1144
Main Authors Wen, Yuxin, AlHakeem, Donna, Mandal, Paras, Chakraborty, Shantanu, Wu, Yuan-Kang, Senjyu, Tomonobu, Paudyal, Sumit, Tseng, Tzu-Liang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2019.2918795

Cover

Abstract This paper presents two probabilistic approaches based on bootstrap method and quantile regression (QR) method to estimate the uncertainty associated with solar photovoltaic (PV) power point forecasts. Solar PV output power forecasts are obtained using a hybrid intelligent model, which is composed of a data filtering technique based on wavelet transform (WT) and a soft computing model (SCM) based on radial basis function neural network (RBFNN) that is optimized by particle swarm optimization (PSO) algorithm. The point forecast capability of the proposed hybrid WT+RBFNN+PSO intelligent model is examined and compared with other hybrid models as well as individual SCM. The performance of the proposed bootstrap method in the form of probabilistic forecasts is compared with the QR method by generating different prediction intervals (PIs). Numerical tests using real data demonstrate that the point forecasts obtained from the proposed hybrid intelligent model can be effectively used to quantify PV power uncertainty. The performance of these two uncertainty quantification methods is assessed through reliability.
AbstractList This paper presents two probabilistic approaches based on bootstrap method and quantile regression (QR) method to estimate the uncertainty associated with solar photovoltaic (PV) power point forecasts. Solar PV output power forecasts are obtained using a hybrid intelligent model, which is composed of a data filtering technique based on wavelet transform (WT) and a soft computing model (SCM) based on radial basis function neural network (RBFNN) that is optimized by particle swarm optimization (PSO) algorithm. The point forecast capability of the proposed hybrid WT+RBFNN+PSO intelligent model is examined and compared with other hybrid models as well as individual SCM. The performance of the proposed bootstrap method in the form of probabilistic forecasts is compared with the QR method by generating different prediction intervals (PIs). Numerical tests using real data demonstrate that the point forecasts obtained from the proposed hybrid intelligent model can be effectively used to quantify PV power uncertainty. The performance of these two uncertainty quantification methods is assessed through reliability.
This paper presents two probabilistic approaches based on bootstrap method and quantile regression (QR) method to estimate the uncertainty associated with solar photovoltaic (PV) power point forecasts. Solar PV output power forecasts are obtained using a hybrid intelligent model, which is composed of a data filtering technique based on wavelet transform (WT) and a soft computing model (SCM) based on radial basis function neural network (RBFNN) that is optimized by particle swarm optimization (PSO) algorithm. The point forecast capability of the proposed hybrid WT+RBFNN+PSO intelligent model is examined and compared with other hybrid models as well as individual SCM. The performance of the proposed bootstrap method in the form of probabilistic forecasts is compared with the QR method by generating different prediction intervals (PIs). Numerical tests using real data demonstrate that the point forecasts obtained from the proposed hybrid intelligent model can be effectively used to quantify PV power uncertainty. The performance of these two uncertainty quantification methods is assessed through reliability.This paper presents two probabilistic approaches based on bootstrap method and quantile regression (QR) method to estimate the uncertainty associated with solar photovoltaic (PV) power point forecasts. Solar PV output power forecasts are obtained using a hybrid intelligent model, which is composed of a data filtering technique based on wavelet transform (WT) and a soft computing model (SCM) based on radial basis function neural network (RBFNN) that is optimized by particle swarm optimization (PSO) algorithm. The point forecast capability of the proposed hybrid WT+RBFNN+PSO intelligent model is examined and compared with other hybrid models as well as individual SCM. The performance of the proposed bootstrap method in the form of probabilistic forecasts is compared with the QR method by generating different prediction intervals (PIs). Numerical tests using real data demonstrate that the point forecasts obtained from the proposed hybrid intelligent model can be effectively used to quantify PV power uncertainty. The performance of these two uncertainty quantification methods is assessed through reliability.
Author Chakraborty, Shantanu
Tseng, Tzu-Liang
Wu, Yuan-Kang
Senjyu, Tomonobu
Mandal, Paras
Paudyal, Sumit
AlHakeem, Donna
Wen, Yuxin
Author_xml – sequence: 1
  givenname: Yuxin
  orcidid: 0000-0002-2352-5622
  surname: Wen
  fullname: Wen, Yuxin
  email: ywen@miners.utep.edu
  organization: Department of Electrical and Computer Engineering, The University of Texas at El Paso, El Paso, TX, USA
– sequence: 2
  givenname: Donna
  surname: AlHakeem
  fullname: AlHakeem, Donna
  email: donna.alhakeem@epelectric.com
  organization: Economic Research Department, El Paso Electric, El Paso, TX, USA
– sequence: 3
  givenname: Paras
  orcidid: 0000-0002-2139-1835
  surname: Mandal
  fullname: Mandal, Paras
  email: pmandal@utep.edu
  organization: Department of Electrical and Computer Engineering, The University of Texas at El Paso, El Paso, TX, USA
– sequence: 4
  givenname: Shantanu
  orcidid: 0000-0001-8881-4903
  surname: Chakraborty
  fullname: Chakraborty, Shantanu
  email: shantanu.chakraborty@unimelb.edu.au
  organization: Energy Transition Hub, Faculty of Science, University of Melbourne, Melbourne, VIC, Australia
– sequence: 5
  givenname: Yuan-Kang
  orcidid: 0000-0002-3707-4770
  surname: Wu
  fullname: Wu, Yuan-Kang
  email: allenwu@ccu.edu.tw
  organization: Department of Electrical Engineering, National Chung Cheng University, Chiayi City, Taiwan
– sequence: 6
  givenname: Tomonobu
  orcidid: 0000-0003-4494-6773
  surname: Senjyu
  fullname: Senjyu, Tomonobu
  email: b985542@tec.u-ryukyu.ac.jp
  organization: Department of Electrical and Electronics Engineering, University of the Ryukyus, Nishihara, Japan
– sequence: 7
  givenname: Sumit
  orcidid: 0000-0001-7534-6645
  surname: Paudyal
  fullname: Paudyal, Sumit
  email: sumitp@mtu.edu
  organization: Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI, USA
– sequence: 8
  givenname: Tzu-Liang
  orcidid: 0000-0002-3903-529X
  surname: Tseng
  fullname: Tseng, Tzu-Liang
  email: btseng@utep.edu
  organization: Department of Industrial, Manufacturing and Systems Engineering, The University of Texas at El Paso, El Paso, TX, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31247566$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS1UREvpC4CELLFhk-CfGXu8pFX_pFACLYid5fFcg6vJOLU9VHmFPnWdJmTRBbZkW1ffudc65zXaG8IACL2lZEopUZ9urq5m11NGqJoyRRup6hfogFHBJow3zd7uLX_to6OUbklZgtSiUq_QPqeskrUQB-hhDtGFuDCDBXz61_SjyT4MODg8j6E1re99yt7iL5D_hC7hY5Ogw4U4DiGnHM0Sm6HD30YzZN8D_g6_I6S07pHDtuxWeP4Tz8M9xHL6IeOzEMGalPGPMjdmU2qrN-ilM32Co-19iK7PTm9OLiazr-eXJ59nE8trmieOd0ZYpVzdcuqU6GponWOUWtLVqmaqdbzqiLJOOiola4WsKi6IU5IR4Ifo46brMoa7EVLWC58s9L0ZIIxJM1YTUXSCFvTDM_Q2jHEof9PFY0nKlrJQ77fU2C6g08voFyau9D-PC8A2gI0hpQhuh1Ci11nqpyz1Oku9zbKImmci6_NTNMVy3_9f-m4j9QCwm9UUFyrF-CNBwa1w
CODEN ITNNAL
CitedBy_id crossref_primary_10_3390_app121910056
crossref_primary_10_3390_su141912683
crossref_primary_10_1109_TSTE_2023_3313120
crossref_primary_10_3390_en17164145
crossref_primary_10_1016_j_apenergy_2025_125294
crossref_primary_10_3390_en16155656
crossref_primary_10_3390_su13073665
crossref_primary_10_3390_en15051836
crossref_primary_10_1016_j_apenergy_2021_118473
crossref_primary_10_1049_rpg2_13108
crossref_primary_10_3390_app11167550
crossref_primary_10_1109_TIA_2021_3090342
crossref_primary_10_1109_TSTE_2021_3098677
crossref_primary_10_1016_j_solener_2024_112422
crossref_primary_10_1016_j_enbuild_2024_114419
crossref_primary_10_1109_TPWRS_2023_3296870
crossref_primary_10_1007_s13369_022_07356_6
crossref_primary_10_1016_j_aei_2023_102345
crossref_primary_10_1109_TSTE_2021_3123476
crossref_primary_10_1016_j_solener_2021_07_063
crossref_primary_10_1080_19397038_2021_1986590
crossref_primary_10_1109_TPWRS_2022_3218306
crossref_primary_10_3390_en13225951
crossref_primary_10_1016_j_energy_2023_127348
crossref_primary_10_1016_j_engappai_2024_109555
crossref_primary_10_1109_TII_2024_3396271
crossref_primary_10_3390_s24051593
crossref_primary_10_1016_j_desal_2022_115871
crossref_primary_10_1007_s00542_023_05485_y
crossref_primary_10_1016_j_epsr_2022_108069
crossref_primary_10_54569_aair_1483394
crossref_primary_10_1109_TSTE_2024_3478760
crossref_primary_10_1016_j_renene_2024_120385
crossref_primary_10_1109_TSTE_2023_3312401
crossref_primary_10_1016_j_csda_2023_107812
crossref_primary_10_1109_TII_2024_3485693
crossref_primary_10_1016_j_engstruct_2022_114285
crossref_primary_10_3390_en13236207
crossref_primary_10_1049_rpg2_12634
crossref_primary_10_1016_j_seta_2023_103088
crossref_primary_10_1109_TPWRS_2023_3302340
crossref_primary_10_3390_en18030503
crossref_primary_10_3390_s22134927
crossref_primary_10_1007_s00477_021_01980_8
crossref_primary_10_1016_j_egyr_2022_09_077
crossref_primary_10_1109_TNNLS_2022_3190984
crossref_primary_10_1016_j_enconman_2024_119219
crossref_primary_10_1109_ACCESS_2021_3062776
crossref_primary_10_2139_ssrn_4120218
crossref_primary_10_1109_TNNLS_2023_3280078
crossref_primary_10_1111_exsy_13087
crossref_primary_10_1109_TNNLS_2023_3335355
crossref_primary_10_1109_ACCESS_2021_3107502
crossref_primary_10_1016_j_neucom_2021_07_032
crossref_primary_10_1109_TNNLS_2023_3234130
crossref_primary_10_1016_j_energy_2023_127807
crossref_primary_10_1016_j_epsr_2023_109433
Cites_doi 10.1109/ICECENG.2011.6057937
10.1109/TNNLS.2015.2396933
10.1016/j.solener.2016.06.069
10.1109/TSTE.2014.2313600
10.1109/TNNLS.2014.2351391
10.1109/TNNLS.2012.2216546
10.1109/PESGM.2015.7286233
10.1109/EEEIC-2.2013.6737883
10.1016/j.pecs.2013.06.002
10.1016/j.solener.2010.05.004
10.1109/78.887001
10.1109/TNNLS.2013.2276053
10.1109/TPWRS.2015.2502423
10.2307/1913643
10.1109/IJCNN.2012.6252406
10.1109/TNNLS.2018.2839101
10.1049/iet-gtd.2008.0328
10.1109/TNNLS.2014.2376696
10.1002/we.114
10.1002/we.284
10.1109/TPWRS.2008.2008606
10.1109/TPWRD.2003.817487
10.1109/TPWRS.2014.2363873
10.1109/PESMG.2013.6672634
10.1109/IECON.2013.6700491
10.1109/TNNLS.2014.2354418
10.1109/TNNLS.2016.2514358
10.1109/TPWRS.2016.2616902
10.1002/we.180
10.1109/UPEC.2013.6714975
10.1109/TENCON.2013.6718512
10.1002/we.230
10.1109/TPWRS.2014.2299801
10.1109/TSTE.2013.2246591
10.1109/TPWRS.2010.2045774
10.1109/TNN.2010.2096824
10.1109/ISDA.2011.6121835
10.1109/JSTARS.2009.2020300
10.1109/TPWRS.2013.2288100
10.1002/we.107
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2019.2918795
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 1144
ExternalDocumentID 31247566
10_1109_TNNLS_2019_2918795
8744492
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-f3da6c99f5b31f96d5ebff211c0d59529bf34d09cf7f1772b6744360f9720e3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Oct 02 10:27:13 EDT 2025
Mon Jun 30 05:33:51 EDT 2025
Thu Jan 02 22:59:03 EST 2025
Wed Oct 01 00:44:48 EDT 2025
Thu Apr 24 22:52:08 EDT 2025
Wed Aug 27 02:42:21 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-f3da6c99f5b31f96d5ebff211c0d59529bf34d09cf7f1772b6744360f9720e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3903-529X
0000-0002-2139-1835
0000-0001-8881-4903
0000-0003-4494-6773
0000-0002-2352-5622
0000-0002-3707-4770
0000-0001-7534-6645
PMID 31247566
PQID 2387070777
PQPubID 85436
PageCount 11
ParticipantIDs crossref_primary_10_1109_TNNLS_2019_2918795
proquest_journals_2387070777
crossref_citationtrail_10_1109_TNNLS_2019_2918795
proquest_miscellaneous_2250617761
pubmed_primary_31247566
ieee_primary_8744492
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref10
ref2
ref39
ref17
ref38
ref16
ref19
ref18
(ref1) 2011
ref24
ref23
ref26
ref25
ref20
ref42
ref41
quan (ref13) 2013
ref22
ref44
ref21
ref43
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
(ref32) 2017
(ref27) 2012
References_xml – ident: ref34
  doi: 10.1109/ICECENG.2011.6057937
– ident: ref6
  doi: 10.1109/TNNLS.2015.2396933
– ident: ref2
  doi: 10.1016/j.solener.2016.06.069
– ident: ref4
  doi: 10.1109/TSTE.2014.2313600
– ident: ref8
  doi: 10.1109/TNNLS.2014.2351391
– ident: ref9
  doi: 10.1109/TNNLS.2012.2216546
– ident: ref37
  doi: 10.1109/PESGM.2015.7286233
– ident: ref12
  doi: 10.1109/EEEIC-2.2013.6737883
– ident: ref20
  doi: 10.1016/j.pecs.2013.06.002
– ident: ref25
  doi: 10.1016/j.solener.2010.05.004
– ident: ref30
  doi: 10.1109/78.887001
– ident: ref23
  doi: 10.1109/TNNLS.2013.2276053
– ident: ref39
  doi: 10.1109/TPWRS.2015.2502423
– ident: ref40
  doi: 10.2307/1913643
– ident: ref19
  doi: 10.1109/IJCNN.2012.6252406
– ident: ref11
  doi: 10.1109/TNNLS.2018.2839101
– ident: ref33
  doi: 10.1049/iet-gtd.2008.0328
– ident: ref10
  doi: 10.1109/TNNLS.2014.2376696
– year: 2012
  ident: ref27
  publication-title: University of Oregon Solar Radiation Monitoring Laboratory website
– ident: ref35
  doi: 10.1002/we.114
– ident: ref36
  doi: 10.1002/we.284
– ident: ref29
  doi: 10.1109/TPWRS.2008.2008606
– ident: ref31
  doi: 10.1109/TPWRD.2003.817487
– ident: ref24
  doi: 10.1109/TPWRS.2014.2363873
– ident: ref28
  doi: 10.1109/PESMG.2013.6672634
– start-page: 1
  year: 2013
  ident: ref13
  article-title: Hybrid model for hourly forecast of photovoltaic and wind power
  publication-title: Proc IEEE Int Conf Fuzzy Syst (FUZZ)
– ident: ref15
  doi: 10.1109/IECON.2013.6700491
– ident: ref7
  doi: 10.1109/TNNLS.2014.2354418
– ident: ref5
  doi: 10.1109/TNNLS.2016.2514358
– ident: ref26
  doi: 10.1109/TPWRS.2016.2616902
– year: 2011
  ident: ref1
  article-title: Utility-scale installations lead solar photovoltaic growth
– ident: ref41
  doi: 10.1002/we.180
– ident: ref18
  doi: 10.1109/UPEC.2013.6714975
– ident: ref16
  doi: 10.1109/TENCON.2013.6718512
– ident: ref43
  doi: 10.1002/we.230
– ident: ref42
  doi: 10.1109/TPWRS.2014.2299801
– ident: ref17
  doi: 10.1109/TSTE.2013.2246591
– ident: ref38
  doi: 10.1109/TPWRS.2010.2045774
– year: 2017
  ident: ref32
  publication-title: Mathworks Radial Basis Neural Networks
– ident: ref22
  doi: 10.1109/TNN.2010.2096824
– ident: ref14
  doi: 10.1109/ISDA.2011.6121835
– ident: ref3
  doi: 10.1109/JSTARS.2009.2020300
– ident: ref21
  doi: 10.1109/TPWRS.2013.2288100
– ident: ref44
  doi: 10.1002/we.107
SSID ssj0000605649
Score 2.567317
Snippet This paper presents two probabilistic approaches based on bootstrap method and quantile regression (QR) method to estimate the uncertainty associated with...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1134
SubjectTerms Algorithms
Artificial neural networks
Bootstrap
Forecasting
Hybrid systems
Mathematical models
Neural networks
neural networks (NNs)
Particle swarm optimization
particle swarm optimization (PSO)
Performance evaluation
Photovoltaic cells
Photovoltaics
Predictive models
Probabilistic logic
Probabilistic methods
quantile regression (QR)
Radial basis function
Reliability analysis
Soft computing
Solar power
solar power forecasting
Statistical analysis
Statistical methods
Uncertainty
Wavelet transforms
Wind forecasting
Title Performance Evaluation of Probabilistic Methods Based on Bootstrap and Quantile Regression to Quantify PV Power Point Forecast Uncertainty
URI https://ieeexplore.ieee.org/document/8744492
https://www.ncbi.nlm.nih.gov/pubmed/31247566
https://www.proquest.com/docview/2387070777
https://www.proquest.com/docview/2250617761
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT1wobXkESmUkbpBtbCf2-khRqwqxq4W2aG9RYnsqBEqqrnMoP4Ff3bHzQCBAXCIrmcRJZuz5PJ4HIa9sDqiHCpHqOYc0Nw6wxUzKIM9yxhxoF0wDi6U8u8zfr4v1FnkzxcI456LzmZuFZtzLt63pgqnsKKRqzzVOuPfUXPaxWpM9JUNcLiPa5UzylAu1HmNkMn10sVx-OA-OXHrGdSyw_YseioVV_o4xo6453SGL8S17F5Ovs87XM_P9twSO__sZD8mDAXTSt72U7JIt1-yRnbGgAx3G9z75sfoZRkBPpjzgtAW6usGBHxxpQ15nuoh1pzf0GHWgpUhx3LY-GE2uadVY-rFDfuF0Qz-5q97PtqG-HU7DLV19pqtQnQ2PXxpPQ3lQU208vcR-o4eCv31Ezk9PLt6dpUOxhtSIgvkUhK2k0RqKWjDQ0hauBsDlpclsoQuuaxC5zbQBBQwhfS3xLwiZgVY8c-Ix2W7axj0lFDIJUOMyDpFaSI9fWaOFcPNaW8M1iISwkXGlGfKYh3Ia38q4nsl0GZldBmaXA7MT8nq657rP4vFP6v3AtIly4FdCDkb5KIeBvikR8aiQMUmphLycLuMQDfsuVePaDmkQZiJQVJIl5EkvV9OzBeIrhZD62Z_7fE7u87DAj65CB2Tb33TuBaIgXx9G8b8DmW4EZQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAXCpRHoICRuEG2cZxHfaSo1QK7q4Vu0d6ixPagqiipus6h_IT-6o6dBwIB4hJZySROMh7PN_Y8AF7rBEkPpSKUBzGGiTJILa5CjkmUcG5QGrc0MF9k09Pk4zpdb8HbMRbGGOOdz8zENf1evm5U65bK9l2q9kTShHsrpUbaRWuNKyoRIfPM492YZ3EYi3w9RMlEcn-1WMxOnCuXnMTSl9j-RRP50ip_R5le2xzvwHx4z87J5HzS2mqifvyWwvF_P-Qe3O1hJ3vXjZP7sGXqB7AzlHRgvYTvwvXyZyABOxozgbMG2fKSRN-50rrMzmzuK09v2CFpQc2I4rBprFs2uWBlrdnnljhGEw77Yr51nrY1s01_Gq_Y8itbuvpsdDyrLXMFQlW5seyU-vU-CvbqIZwcH63eT8O-XEOoRMptiEKXmZIS00pwlJlOTYVIBqaKdCrTWFYoEh1JhTlyAvVVRn9BZBHKPI6MeATbdVObJ8AwyhArMuQIq7kE-aVWUghzUEmtYokiAD4wrlB9JnNXUON74S2aSBae2YVjdtEzO4A34z0XXR6Pf1LvOqaNlD2_AtgbxkfRi_qmIMyTu5xJeR7Aq_EyCanbeSlr07REQ0CToGKe8QAed-NqfLYghJUTqH765z5fwu3paj4rZh8Wn57BndiZ-95xaA-27WVrnhMmstULLwo3WIwHsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Evaluation+of+Probabilistic+Methods+Based+on+Bootstrap+and+Quantile+Regression+to+Quantify+PV+Power+Point+Forecast+Uncertainty&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wen%2C+Yuxin&rft.au=AlHakeem%2C+Donna&rft.au=Mandal%2C+Paras&rft.au=Chakraborty%2C+Shantanu&rft.date=2020-04-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=31&rft.issue=4&rft.spage=1134&rft.epage=1144&rft_id=info:doi/10.1109%2FTNNLS.2019.2918795&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2019_2918795
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon