Performance Evaluation of Probabilistic Methods Based on Bootstrap and Quantile Regression to Quantify PV Power Point Forecast Uncertainty
This paper presents two probabilistic approaches based on bootstrap method and quantile regression (QR) method to estimate the uncertainty associated with solar photovoltaic (PV) power point forecasts. Solar PV output power forecasts are obtained using a hybrid intelligent model, which is composed o...
Saved in:
| Published in | IEEE transaction on neural networks and learning systems Vol. 31; no. 4; pp. 1134 - 1144 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2162-237X 2162-2388 2162-2388 |
| DOI | 10.1109/TNNLS.2019.2918795 |
Cover
| Abstract | This paper presents two probabilistic approaches based on bootstrap method and quantile regression (QR) method to estimate the uncertainty associated with solar photovoltaic (PV) power point forecasts. Solar PV output power forecasts are obtained using a hybrid intelligent model, which is composed of a data filtering technique based on wavelet transform (WT) and a soft computing model (SCM) based on radial basis function neural network (RBFNN) that is optimized by particle swarm optimization (PSO) algorithm. The point forecast capability of the proposed hybrid WT+RBFNN+PSO intelligent model is examined and compared with other hybrid models as well as individual SCM. The performance of the proposed bootstrap method in the form of probabilistic forecasts is compared with the QR method by generating different prediction intervals (PIs). Numerical tests using real data demonstrate that the point forecasts obtained from the proposed hybrid intelligent model can be effectively used to quantify PV power uncertainty. The performance of these two uncertainty quantification methods is assessed through reliability. |
|---|---|
| AbstractList | This paper presents two probabilistic approaches based on bootstrap method and quantile regression (QR) method to estimate the uncertainty associated with solar photovoltaic (PV) power point forecasts. Solar PV output power forecasts are obtained using a hybrid intelligent model, which is composed of a data filtering technique based on wavelet transform (WT) and a soft computing model (SCM) based on radial basis function neural network (RBFNN) that is optimized by particle swarm optimization (PSO) algorithm. The point forecast capability of the proposed hybrid WT+RBFNN+PSO intelligent model is examined and compared with other hybrid models as well as individual SCM. The performance of the proposed bootstrap method in the form of probabilistic forecasts is compared with the QR method by generating different prediction intervals (PIs). Numerical tests using real data demonstrate that the point forecasts obtained from the proposed hybrid intelligent model can be effectively used to quantify PV power uncertainty. The performance of these two uncertainty quantification methods is assessed through reliability. This paper presents two probabilistic approaches based on bootstrap method and quantile regression (QR) method to estimate the uncertainty associated with solar photovoltaic (PV) power point forecasts. Solar PV output power forecasts are obtained using a hybrid intelligent model, which is composed of a data filtering technique based on wavelet transform (WT) and a soft computing model (SCM) based on radial basis function neural network (RBFNN) that is optimized by particle swarm optimization (PSO) algorithm. The point forecast capability of the proposed hybrid WT+RBFNN+PSO intelligent model is examined and compared with other hybrid models as well as individual SCM. The performance of the proposed bootstrap method in the form of probabilistic forecasts is compared with the QR method by generating different prediction intervals (PIs). Numerical tests using real data demonstrate that the point forecasts obtained from the proposed hybrid intelligent model can be effectively used to quantify PV power uncertainty. The performance of these two uncertainty quantification methods is assessed through reliability.This paper presents two probabilistic approaches based on bootstrap method and quantile regression (QR) method to estimate the uncertainty associated with solar photovoltaic (PV) power point forecasts. Solar PV output power forecasts are obtained using a hybrid intelligent model, which is composed of a data filtering technique based on wavelet transform (WT) and a soft computing model (SCM) based on radial basis function neural network (RBFNN) that is optimized by particle swarm optimization (PSO) algorithm. The point forecast capability of the proposed hybrid WT+RBFNN+PSO intelligent model is examined and compared with other hybrid models as well as individual SCM. The performance of the proposed bootstrap method in the form of probabilistic forecasts is compared with the QR method by generating different prediction intervals (PIs). Numerical tests using real data demonstrate that the point forecasts obtained from the proposed hybrid intelligent model can be effectively used to quantify PV power uncertainty. The performance of these two uncertainty quantification methods is assessed through reliability. |
| Author | Chakraborty, Shantanu Tseng, Tzu-Liang Wu, Yuan-Kang Senjyu, Tomonobu Mandal, Paras Paudyal, Sumit AlHakeem, Donna Wen, Yuxin |
| Author_xml | – sequence: 1 givenname: Yuxin orcidid: 0000-0002-2352-5622 surname: Wen fullname: Wen, Yuxin email: ywen@miners.utep.edu organization: Department of Electrical and Computer Engineering, The University of Texas at El Paso, El Paso, TX, USA – sequence: 2 givenname: Donna surname: AlHakeem fullname: AlHakeem, Donna email: donna.alhakeem@epelectric.com organization: Economic Research Department, El Paso Electric, El Paso, TX, USA – sequence: 3 givenname: Paras orcidid: 0000-0002-2139-1835 surname: Mandal fullname: Mandal, Paras email: pmandal@utep.edu organization: Department of Electrical and Computer Engineering, The University of Texas at El Paso, El Paso, TX, USA – sequence: 4 givenname: Shantanu orcidid: 0000-0001-8881-4903 surname: Chakraborty fullname: Chakraborty, Shantanu email: shantanu.chakraborty@unimelb.edu.au organization: Energy Transition Hub, Faculty of Science, University of Melbourne, Melbourne, VIC, Australia – sequence: 5 givenname: Yuan-Kang orcidid: 0000-0002-3707-4770 surname: Wu fullname: Wu, Yuan-Kang email: allenwu@ccu.edu.tw organization: Department of Electrical Engineering, National Chung Cheng University, Chiayi City, Taiwan – sequence: 6 givenname: Tomonobu orcidid: 0000-0003-4494-6773 surname: Senjyu fullname: Senjyu, Tomonobu email: b985542@tec.u-ryukyu.ac.jp organization: Department of Electrical and Electronics Engineering, University of the Ryukyus, Nishihara, Japan – sequence: 7 givenname: Sumit orcidid: 0000-0001-7534-6645 surname: Paudyal fullname: Paudyal, Sumit email: sumitp@mtu.edu organization: Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI, USA – sequence: 8 givenname: Tzu-Liang orcidid: 0000-0002-3903-529X surname: Tseng fullname: Tseng, Tzu-Liang email: btseng@utep.edu organization: Department of Industrial, Manufacturing and Systems Engineering, The University of Texas at El Paso, El Paso, TX, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31247566$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1uEzEUhS1UREvpC4CELLFhk-CfGXu8pFX_pFACLYid5fFcg6vJOLU9VHmFPnWdJmTRBbZkW1ffudc65zXaG8IACL2lZEopUZ9urq5m11NGqJoyRRup6hfogFHBJow3zd7uLX_to6OUbklZgtSiUq_QPqeskrUQB-hhDtGFuDCDBXz61_SjyT4MODg8j6E1re99yt7iL5D_hC7hY5Ogw4U4DiGnHM0Sm6HD30YzZN8D_g6_I6S07pHDtuxWeP4Tz8M9xHL6IeOzEMGalPGPMjdmU2qrN-ilM32Co-19iK7PTm9OLiazr-eXJ59nE8trmieOd0ZYpVzdcuqU6GponWOUWtLVqmaqdbzqiLJOOiola4WsKi6IU5IR4Ifo46brMoa7EVLWC58s9L0ZIIxJM1YTUXSCFvTDM_Q2jHEof9PFY0nKlrJQ77fU2C6g08voFyau9D-PC8A2gI0hpQhuh1Ci11nqpyz1Oku9zbKImmci6_NTNMVy3_9f-m4j9QCwm9UUFyrF-CNBwa1w |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_3390_app121910056 crossref_primary_10_3390_su141912683 crossref_primary_10_1109_TSTE_2023_3313120 crossref_primary_10_3390_en17164145 crossref_primary_10_1016_j_apenergy_2025_125294 crossref_primary_10_3390_en16155656 crossref_primary_10_3390_su13073665 crossref_primary_10_3390_en15051836 crossref_primary_10_1016_j_apenergy_2021_118473 crossref_primary_10_1049_rpg2_13108 crossref_primary_10_3390_app11167550 crossref_primary_10_1109_TIA_2021_3090342 crossref_primary_10_1109_TSTE_2021_3098677 crossref_primary_10_1016_j_solener_2024_112422 crossref_primary_10_1016_j_enbuild_2024_114419 crossref_primary_10_1109_TPWRS_2023_3296870 crossref_primary_10_1007_s13369_022_07356_6 crossref_primary_10_1016_j_aei_2023_102345 crossref_primary_10_1109_TSTE_2021_3123476 crossref_primary_10_1016_j_solener_2021_07_063 crossref_primary_10_1080_19397038_2021_1986590 crossref_primary_10_1109_TPWRS_2022_3218306 crossref_primary_10_3390_en13225951 crossref_primary_10_1016_j_energy_2023_127348 crossref_primary_10_1016_j_engappai_2024_109555 crossref_primary_10_1109_TII_2024_3396271 crossref_primary_10_3390_s24051593 crossref_primary_10_1016_j_desal_2022_115871 crossref_primary_10_1007_s00542_023_05485_y crossref_primary_10_1016_j_epsr_2022_108069 crossref_primary_10_54569_aair_1483394 crossref_primary_10_1109_TSTE_2024_3478760 crossref_primary_10_1016_j_renene_2024_120385 crossref_primary_10_1109_TSTE_2023_3312401 crossref_primary_10_1016_j_csda_2023_107812 crossref_primary_10_1109_TII_2024_3485693 crossref_primary_10_1016_j_engstruct_2022_114285 crossref_primary_10_3390_en13236207 crossref_primary_10_1049_rpg2_12634 crossref_primary_10_1016_j_seta_2023_103088 crossref_primary_10_1109_TPWRS_2023_3302340 crossref_primary_10_3390_en18030503 crossref_primary_10_3390_s22134927 crossref_primary_10_1007_s00477_021_01980_8 crossref_primary_10_1016_j_egyr_2022_09_077 crossref_primary_10_1109_TNNLS_2022_3190984 crossref_primary_10_1016_j_enconman_2024_119219 crossref_primary_10_1109_ACCESS_2021_3062776 crossref_primary_10_2139_ssrn_4120218 crossref_primary_10_1109_TNNLS_2023_3280078 crossref_primary_10_1111_exsy_13087 crossref_primary_10_1109_TNNLS_2023_3335355 crossref_primary_10_1109_ACCESS_2021_3107502 crossref_primary_10_1016_j_neucom_2021_07_032 crossref_primary_10_1109_TNNLS_2023_3234130 crossref_primary_10_1016_j_energy_2023_127807 crossref_primary_10_1016_j_epsr_2023_109433 |
| Cites_doi | 10.1109/ICECENG.2011.6057937 10.1109/TNNLS.2015.2396933 10.1016/j.solener.2016.06.069 10.1109/TSTE.2014.2313600 10.1109/TNNLS.2014.2351391 10.1109/TNNLS.2012.2216546 10.1109/PESGM.2015.7286233 10.1109/EEEIC-2.2013.6737883 10.1016/j.pecs.2013.06.002 10.1016/j.solener.2010.05.004 10.1109/78.887001 10.1109/TNNLS.2013.2276053 10.1109/TPWRS.2015.2502423 10.2307/1913643 10.1109/IJCNN.2012.6252406 10.1109/TNNLS.2018.2839101 10.1049/iet-gtd.2008.0328 10.1109/TNNLS.2014.2376696 10.1002/we.114 10.1002/we.284 10.1109/TPWRS.2008.2008606 10.1109/TPWRD.2003.817487 10.1109/TPWRS.2014.2363873 10.1109/PESMG.2013.6672634 10.1109/IECON.2013.6700491 10.1109/TNNLS.2014.2354418 10.1109/TNNLS.2016.2514358 10.1109/TPWRS.2016.2616902 10.1002/we.180 10.1109/UPEC.2013.6714975 10.1109/TENCON.2013.6718512 10.1002/we.230 10.1109/TPWRS.2014.2299801 10.1109/TSTE.2013.2246591 10.1109/TPWRS.2010.2045774 10.1109/TNN.2010.2096824 10.1109/ISDA.2011.6121835 10.1109/JSTARS.2009.2020300 10.1109/TPWRS.2013.2288100 10.1002/we.107 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2019.2918795 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 1144 |
| ExternalDocumentID | 31247566 10_1109_TNNLS_2019_2918795 8744492 |
| Genre | orig-research Journal Article |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-f3da6c99f5b31f96d5ebff211c0d59529bf34d09cf7f1772b6744360f9720e3 |
| IEDL.DBID | RIE |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Thu Oct 02 10:27:13 EDT 2025 Mon Jun 30 05:33:51 EDT 2025 Thu Jan 02 22:59:03 EST 2025 Wed Oct 01 00:44:48 EDT 2025 Thu Apr 24 22:52:08 EDT 2025 Wed Aug 27 02:42:21 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-f3da6c99f5b31f96d5ebff211c0d59529bf34d09cf7f1772b6744360f9720e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3903-529X 0000-0002-2139-1835 0000-0001-8881-4903 0000-0003-4494-6773 0000-0002-2352-5622 0000-0002-3707-4770 0000-0001-7534-6645 |
| PMID | 31247566 |
| PQID | 2387070777 |
| PQPubID | 85436 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_TNNLS_2019_2918795 proquest_journals_2387070777 crossref_citationtrail_10_1109_TNNLS_2019_2918795 proquest_miscellaneous_2250617761 pubmed_primary_31247566 ieee_primary_8744492 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref10 ref2 ref39 ref17 ref38 ref16 ref19 ref18 (ref1) 2011 ref24 ref23 ref26 ref25 ref20 ref42 ref41 quan (ref13) 2013 ref22 ref44 ref21 ref43 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 (ref32) 2017 (ref27) 2012 |
| References_xml | – ident: ref34 doi: 10.1109/ICECENG.2011.6057937 – ident: ref6 doi: 10.1109/TNNLS.2015.2396933 – ident: ref2 doi: 10.1016/j.solener.2016.06.069 – ident: ref4 doi: 10.1109/TSTE.2014.2313600 – ident: ref8 doi: 10.1109/TNNLS.2014.2351391 – ident: ref9 doi: 10.1109/TNNLS.2012.2216546 – ident: ref37 doi: 10.1109/PESGM.2015.7286233 – ident: ref12 doi: 10.1109/EEEIC-2.2013.6737883 – ident: ref20 doi: 10.1016/j.pecs.2013.06.002 – ident: ref25 doi: 10.1016/j.solener.2010.05.004 – ident: ref30 doi: 10.1109/78.887001 – ident: ref23 doi: 10.1109/TNNLS.2013.2276053 – ident: ref39 doi: 10.1109/TPWRS.2015.2502423 – ident: ref40 doi: 10.2307/1913643 – ident: ref19 doi: 10.1109/IJCNN.2012.6252406 – ident: ref11 doi: 10.1109/TNNLS.2018.2839101 – ident: ref33 doi: 10.1049/iet-gtd.2008.0328 – ident: ref10 doi: 10.1109/TNNLS.2014.2376696 – year: 2012 ident: ref27 publication-title: University of Oregon Solar Radiation Monitoring Laboratory website – ident: ref35 doi: 10.1002/we.114 – ident: ref36 doi: 10.1002/we.284 – ident: ref29 doi: 10.1109/TPWRS.2008.2008606 – ident: ref31 doi: 10.1109/TPWRD.2003.817487 – ident: ref24 doi: 10.1109/TPWRS.2014.2363873 – ident: ref28 doi: 10.1109/PESMG.2013.6672634 – start-page: 1 year: 2013 ident: ref13 article-title: Hybrid model for hourly forecast of photovoltaic and wind power publication-title: Proc IEEE Int Conf Fuzzy Syst (FUZZ) – ident: ref15 doi: 10.1109/IECON.2013.6700491 – ident: ref7 doi: 10.1109/TNNLS.2014.2354418 – ident: ref5 doi: 10.1109/TNNLS.2016.2514358 – ident: ref26 doi: 10.1109/TPWRS.2016.2616902 – year: 2011 ident: ref1 article-title: Utility-scale installations lead solar photovoltaic growth – ident: ref41 doi: 10.1002/we.180 – ident: ref18 doi: 10.1109/UPEC.2013.6714975 – ident: ref16 doi: 10.1109/TENCON.2013.6718512 – ident: ref43 doi: 10.1002/we.230 – ident: ref42 doi: 10.1109/TPWRS.2014.2299801 – ident: ref17 doi: 10.1109/TSTE.2013.2246591 – ident: ref38 doi: 10.1109/TPWRS.2010.2045774 – year: 2017 ident: ref32 publication-title: Mathworks Radial Basis Neural Networks – ident: ref22 doi: 10.1109/TNN.2010.2096824 – ident: ref14 doi: 10.1109/ISDA.2011.6121835 – ident: ref3 doi: 10.1109/JSTARS.2009.2020300 – ident: ref21 doi: 10.1109/TPWRS.2013.2288100 – ident: ref44 doi: 10.1002/we.107 |
| SSID | ssj0000605649 |
| Score | 2.567317 |
| Snippet | This paper presents two probabilistic approaches based on bootstrap method and quantile regression (QR) method to estimate the uncertainty associated with... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1134 |
| SubjectTerms | Algorithms Artificial neural networks Bootstrap Forecasting Hybrid systems Mathematical models Neural networks neural networks (NNs) Particle swarm optimization particle swarm optimization (PSO) Performance evaluation Photovoltaic cells Photovoltaics Predictive models Probabilistic logic Probabilistic methods quantile regression (QR) Radial basis function Reliability analysis Soft computing Solar power solar power forecasting Statistical analysis Statistical methods Uncertainty Wavelet transforms Wind forecasting |
| Title | Performance Evaluation of Probabilistic Methods Based on Bootstrap and Quantile Regression to Quantify PV Power Point Forecast Uncertainty |
| URI | https://ieeexplore.ieee.org/document/8744492 https://www.ncbi.nlm.nih.gov/pubmed/31247566 https://www.proquest.com/docview/2387070777 https://www.proquest.com/docview/2250617761 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT1wobXkESmUkbpBtbCf2-khRqwqxq4W2aG9RYnsqBEqqrnMoP4Ff3bHzQCBAXCIrmcRJZuz5PJ4HIa9sDqiHCpHqOYc0Nw6wxUzKIM9yxhxoF0wDi6U8u8zfr4v1FnkzxcI456LzmZuFZtzLt63pgqnsKKRqzzVOuPfUXPaxWpM9JUNcLiPa5UzylAu1HmNkMn10sVx-OA-OXHrGdSyw_YseioVV_o4xo6453SGL8S17F5Ovs87XM_P9twSO__sZD8mDAXTSt72U7JIt1-yRnbGgAx3G9z75sfoZRkBPpjzgtAW6usGBHxxpQ15nuoh1pzf0GHWgpUhx3LY-GE2uadVY-rFDfuF0Qz-5q97PtqG-HU7DLV19pqtQnQ2PXxpPQ3lQU208vcR-o4eCv31Ezk9PLt6dpUOxhtSIgvkUhK2k0RqKWjDQ0hauBsDlpclsoQuuaxC5zbQBBQwhfS3xLwiZgVY8c-Ix2W7axj0lFDIJUOMyDpFaSI9fWaOFcPNaW8M1iISwkXGlGfKYh3Ia38q4nsl0GZldBmaXA7MT8nq657rP4vFP6v3AtIly4FdCDkb5KIeBvikR8aiQMUmphLycLuMQDfsuVePaDmkQZiJQVJIl5EkvV9OzBeIrhZD62Z_7fE7u87DAj65CB2Tb33TuBaIgXx9G8b8DmW4EZQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAXCpRHoICRuEG2cZxHfaSo1QK7q4Vu0d6ixPagqiipus6h_IT-6o6dBwIB4hJZySROMh7PN_Y8AF7rBEkPpSKUBzGGiTJILa5CjkmUcG5QGrc0MF9k09Pk4zpdb8HbMRbGGOOdz8zENf1evm5U65bK9l2q9kTShHsrpUbaRWuNKyoRIfPM492YZ3EYi3w9RMlEcn-1WMxOnCuXnMTSl9j-RRP50ip_R5le2xzvwHx4z87J5HzS2mqifvyWwvF_P-Qe3O1hJ3vXjZP7sGXqB7AzlHRgvYTvwvXyZyABOxozgbMG2fKSRN-50rrMzmzuK09v2CFpQc2I4rBprFs2uWBlrdnnljhGEw77Yr51nrY1s01_Gq_Y8itbuvpsdDyrLXMFQlW5seyU-vU-CvbqIZwcH63eT8O-XEOoRMptiEKXmZIS00pwlJlOTYVIBqaKdCrTWFYoEh1JhTlyAvVVRn9BZBHKPI6MeATbdVObJ8AwyhArMuQIq7kE-aVWUghzUEmtYokiAD4wrlB9JnNXUON74S2aSBae2YVjdtEzO4A34z0XXR6Pf1LvOqaNlD2_AtgbxkfRi_qmIMyTu5xJeR7Aq_EyCanbeSlr07REQ0CToGKe8QAed-NqfLYghJUTqH765z5fwu3paj4rZh8Wn57BndiZ-95xaA-27WVrnhMmstULLwo3WIwHsg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Evaluation+of+Probabilistic+Methods+Based+on+Bootstrap+and+Quantile+Regression+to+Quantify+PV+Power+Point+Forecast+Uncertainty&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wen%2C+Yuxin&rft.au=AlHakeem%2C+Donna&rft.au=Mandal%2C+Paras&rft.au=Chakraborty%2C+Shantanu&rft.date=2020-04-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=31&rft.issue=4&rft.spage=1134&rft.epage=1144&rft_id=info:doi/10.1109%2FTNNLS.2019.2918795&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2019_2918795 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |