Performance Evaluation of Probabilistic Methods Based on Bootstrap and Quantile Regression to Quantify PV Power Point Forecast Uncertainty

This paper presents two probabilistic approaches based on bootstrap method and quantile regression (QR) method to estimate the uncertainty associated with solar photovoltaic (PV) power point forecasts. Solar PV output power forecasts are obtained using a hybrid intelligent model, which is composed o...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 31; no. 4; pp. 1134 - 1144
Main Authors Wen, Yuxin, AlHakeem, Donna, Mandal, Paras, Chakraborty, Shantanu, Wu, Yuan-Kang, Senjyu, Tomonobu, Paudyal, Sumit, Tseng, Tzu-Liang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2019.2918795

Cover

More Information
Summary:This paper presents two probabilistic approaches based on bootstrap method and quantile regression (QR) method to estimate the uncertainty associated with solar photovoltaic (PV) power point forecasts. Solar PV output power forecasts are obtained using a hybrid intelligent model, which is composed of a data filtering technique based on wavelet transform (WT) and a soft computing model (SCM) based on radial basis function neural network (RBFNN) that is optimized by particle swarm optimization (PSO) algorithm. The point forecast capability of the proposed hybrid WT+RBFNN+PSO intelligent model is examined and compared with other hybrid models as well as individual SCM. The performance of the proposed bootstrap method in the form of probabilistic forecasts is compared with the QR method by generating different prediction intervals (PIs). Numerical tests using real data demonstrate that the point forecasts obtained from the proposed hybrid intelligent model can be effectively used to quantify PV power uncertainty. The performance of these two uncertainty quantification methods is assessed through reliability.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2019.2918795