Methods for true energy-performance optimization
This paper presents methods for efficient energy-performance optimization at the circuit and micro-architectural levels. The optimal balance between energy and performance is achieved when the sensitivity of energy to a change in performance is equal for all the design variables. The sensitivity-bas...
Saved in:
| Published in | IEEE journal of solid-state circuits Vol. 39; no. 8; pp. 1282 - 1293 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.08.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9200 1558-173X |
| DOI | 10.1109/JSSC.2004.831796 |
Cover
| Summary: | This paper presents methods for efficient energy-performance optimization at the circuit and micro-architectural levels. The optimal balance between energy and performance is achieved when the sensitivity of energy to a change in performance is equal for all the design variables. The sensitivity-based optimizations minimize energy subject to a delay constraint. Energy savings of about 65% can be achieved without delay penalty with equalization of sensitivities to sizing, supply, and threshold voltage in a 64-bit adder, compared to the reference design sized for minimum delay. Circuit optimization is effective only in the region of about /spl plusmn/30% around the reference delay; outside of this region the optimization becomes too costly either in terms of energy or delay. Using optimal energy-delay tradeoffs from the circuit level and introducing more degrees of freedom, the optimization is hierarchically extended to higher abstraction layers. We focus on the micro-architectural optimization and demonstrate that the scope of energy-efficient optimization can be extended by the choice of circuit topology or the level of parallelism. In a 64-bit ALU example, parallelism of five provides a three-fold performance increase, while requiring the same energy as the reference design. Parallel or time-multiplexed solutions significantly affect the area of their respective designs, so the overall design cost is minimized when optimal energy-area tradeoff is achieved. |
|---|---|
| Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| ISSN: | 0018-9200 1558-173X |
| DOI: | 10.1109/JSSC.2004.831796 |