Design optimization of low-power high-performance DSP building blocks

In recent years, power dissipation along with silicon area has become the key figure in chip design. The increasing demands on system performance require high-performance digital signal processing (DSP) systems to include dedicated number-crunching units as individually optimized building blocks. Th...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 39; no. 7; pp. 1131 - 1139
Main Authors Gemmeke, T., Gansen, M., Stockmanns, H.J., Noll, T.G.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9200
1558-173X
DOI10.1109/JSSC.2004.829395

Cover

More Information
Summary:In recent years, power dissipation along with silicon area has become the key figure in chip design. The increasing demands on system performance require high-performance digital signal processing (DSP) systems to include dedicated number-crunching units as individually optimized building blocks. The various design methodologies in use stress one of the following figures: power dissipation, throughput, or silicon area. This paper presents a design methodology reducing any combination of cost drivers subject to a specified throughput. As a basic principle, the underlying optimization regards the existing interactions within the design space of a building block. Crucial in such optimization is the proper dimensioning of device sizes in contrast to the common use of minimal dimensions in low-power implementations. Taking the design space of an FIR filter as an example, the different steps of the design process are highlighted resulting in a low-power high-throughput filter implementation. It is part of an industrial read-write channel chip for hard disks with a worst case throughput of 1.6 GSamples/s at 23 mW in a 0.13-/spl mu/m CMOS technology. This filter requires less silicon area than other state-of-the-art filter implementations, and it disrupts the average trend of power dissipation by a factor of 6.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2004.829395