PSO-optimized modular neural network trained by OWO-HWO algorithm for fault location in analog circuits

Fault diagnosis of analog circuits is a key problem in the theory of circuit networks and has been investigated by many researchers in recent decades. In this paper, an active filter circuit is used as the circuit under test (CUT) and is simulated in both fault-free and faulty conditions. A modular...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 23; no. 2; pp. 519 - 530
Main Authors Sheikhan, Mansour, Sha’bani, Amir Ali
Format Journal Article
LanguageEnglish
Published London Springer London 01.08.2013
Springer
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-012-0947-9

Cover

More Information
Summary:Fault diagnosis of analog circuits is a key problem in the theory of circuit networks and has been investigated by many researchers in recent decades. In this paper, an active filter circuit is used as the circuit under test (CUT) and is simulated in both fault-free and faulty conditions. A modular neural network model is proposed in this paper for soft fault diagnosis of the CUT. To optimize the structure of neural network modules in the proposed scheme, particle swarm optimization (PSO) algorithm is used to determine the number of hidden layer nodes of neural network modules. In addition, the output weight optimization–hidden weight optimization (OWO-HWO) training algorithm is employed, instead of conventional output weight optimization–backpropagation (OWO-BP) algorithm, to improve convergence speed in training of the neural network modules in proposed modular model. The performance of the proposed method is compared to that of monolithic multilayer perceptrons (MLPs) trained by OWO-BP and OWO-HWO algorithms, K-nearest neighbor (KNN) classifier and a related system with the same CUT. Experimental results show that the PSO-optimized modular neural network model which is trained by the OWO-HWO algorithm offers higher correct fault location rate in analog circuit fault diagnosis application as compared to the classic and monolithic investigated neural models.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-012-0947-9