Zeros of the Epstein zeta function to the right of the critical line
Let E(s, Q) be the Epstein zeta function attached to a positive definite quadratic form of discriminant D < 0, such that h(D) ≥ 2, where h(D) is the class number of the imaginary quadratic field ${\mathbb{Q}} (\sqrt D)$ . We denote by ${N_E}({\sigma _1},{\sigma _2},T)$ the number of zeros of $[E(...
Saved in:
Published in | Mathematical proceedings of the Cambridge Philosophical Society Vol. 171; no. 2; pp. 265 - 276 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.09.2021
Cambridge University Press (CUP) |
Subjects | |
Online Access | Get full text |
ISSN | 0305-0041 1469-8064 |
DOI | 10.1017/S0305004120000213 |
Cover
Summary: | Let E(s, Q) be the Epstein zeta function attached to a positive definite quadratic form of discriminant D < 0, such that h(D) ≥ 2, where h(D) is the class number of the imaginary quadratic field
${\mathbb{Q}} (\sqrt D)$
. We denote by
${N_E}({\sigma _1},{\sigma _2},T)$
the number of zeros of
$[E(s,Q)$
in the rectangle
${\sigma _1} < {\mathop{\rm Re}\nolimits} (s) \le {\sigma _2}$
and
$T \le {\mathop{\rm Im}\nolimits} (s) \le 2T$
, where
$1/2 < {\sigma _1} < {\sigma _2} < 1$
are fixed real numbers. In this paper, we improve the asymptotic formula of Gonek and Lee for
${N_E}({\sigma _1},{\sigma _2},T)$
, obtaining a saving of a power of log T in the error term. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0305-0041 1469-8064 |
DOI: | 10.1017/S0305004120000213 |