Zeros of the Epstein zeta function to the right of the critical line

Let E(s, Q) be the Epstein zeta function attached to a positive definite quadratic form of discriminant D < 0, such that h(D) ≥ 2, where h(D) is the class number of the imaginary quadratic field ${\mathbb{Q}} (\sqrt D)$ . We denote by ${N_E}({\sigma _1},{\sigma _2},T)$ the number of zeros of $[E(...

Full description

Saved in:
Bibliographic Details
Published inMathematical proceedings of the Cambridge Philosophical Society Vol. 171; no. 2; pp. 265 - 276
Main Author LAMZOURI, YOUNESS
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.09.2021
Cambridge University Press (CUP)
Subjects
Online AccessGet full text
ISSN0305-0041
1469-8064
DOI10.1017/S0305004120000213

Cover

More Information
Summary:Let E(s, Q) be the Epstein zeta function attached to a positive definite quadratic form of discriminant D < 0, such that h(D) ≥ 2, where h(D) is the class number of the imaginary quadratic field ${\mathbb{Q}} (\sqrt D)$ . We denote by ${N_E}({\sigma _1},{\sigma _2},T)$ the number of zeros of $[E(s,Q)$ in the rectangle ${\sigma _1} < {\mathop{\rm Re}\nolimits} (s) \le {\sigma _2}$ and $T \le {\mathop{\rm Im}\nolimits} (s) \le 2T$ , where $1/2 < {\sigma _1} < {\sigma _2} < 1$ are fixed real numbers. In this paper, we improve the asymptotic formula of Gonek and Lee for ${N_E}({\sigma _1},{\sigma _2},T)$ , obtaining a saving of a power of log T in the error term.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004120000213