Ranking-Preserving Cross-Source Learning for Image Retargeting Quality Assessment

Image retargeting techniques adjust images into different sizes and have attracted much attention recently. Objective quality assessment (OQA) of image retargeting results is often desired to automatically select the best results. Existing OQA methods train a model using some benchmarks (e.g., Retar...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 42; no. 7; pp. 1798 - 1805
Main Authors Liu, Yong-Jin, Han, Yiheng, Ye, Zipeng, Lai, Yu-Kun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
2160-9292
1939-3539
DOI10.1109/TPAMI.2019.2923998

Cover

More Information
Summary:Image retargeting techniques adjust images into different sizes and have attracted much attention recently. Objective quality assessment (OQA) of image retargeting results is often desired to automatically select the best results. Existing OQA methods train a model using some benchmarks (e.g., RetargetMe), in which subjective scores evaluated by users are provided. Observing that it is challenging even for human subjects to give consistent scores for retargeting results of different source images (diff-source-results), in this paper we propose a learning-based OQA method that trains a General Regression Neural Network (GRNN) model based on relative scores-which preserve the ranking-of retargeting results of the same source image (same-source-results). In particular, we develop a novel training scheme with provable convergence that learns a common base scalar for same-source-results. With this source specific offset, our computed scores not only preserve the ranking of subjective scores for same-source-results, but also provide a reference to compare the diff-source-results. We train and evaluate our GRNN model using human preference data collected in RetargetMe. We further introduce a subjective benchmark to evaluate the generalizability of different OQA methods. Experimental results demonstrate that our method outperforms ten representative OQA methods in ranking prediction and has better generalizability to different datasets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
1939-3539
DOI:10.1109/TPAMI.2019.2923998