An RNN-Based Algorithm for Decentralized-Partial-Consensus Constrained Optimization
This technical note proposes a decentralized-partial-consensus optimization (DPCO) problem with inequality constraints. The partial-consensus matrix originating from the Laplacian matrix is constructed to tackle the partial-consensus constraints. A continuous-time algorithm based on multiple interco...
Saved in:
| Published in | IEEE transaction on neural networks and learning systems Vol. 34; no. 1; pp. 534 - 542 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2162-237X 2162-2388 2162-2388 |
| DOI | 10.1109/TNNLS.2021.3098668 |
Cover
| Summary: | This technical note proposes a decentralized-partial-consensus optimization (DPCO) problem with inequality constraints. The partial-consensus matrix originating from the Laplacian matrix is constructed to tackle the partial-consensus constraints. A continuous-time algorithm based on multiple interconnected recurrent neural networks (RNNs) is derived to solve the optimization problem. In addition, based on nonsmooth analysis and Lyapunov theory, the convergence of continuous-time algorithm is further proved. Finally, several examples demonstrate the effectiveness of main results. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2162-237X 2162-2388 2162-2388 |
| DOI: | 10.1109/TNNLS.2021.3098668 |