Kernel Adaptive Filtering Over Complex Networks

This brief is concerned with the problem of kernel adaptive filtering for a complex network. First, a coupled kernel least mean square (KLMS) algorithm is developed for each node to uncover its nonlinear measurement function by using a series of input-output data. Subsequently, an upper bound is der...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 3; pp. 1 - 8
Main Authors Li, Wenling, Wang, Zidong, Hu, Jun, Du, Junping, Sheng, Weiguo
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2022.3199679

Cover

Abstract This brief is concerned with the problem of kernel adaptive filtering for a complex network. First, a coupled kernel least mean square (KLMS) algorithm is developed for each node to uncover its nonlinear measurement function by using a series of input-output data. Subsequently, an upper bound is derived for the step-size of the coupled KLMS algorithm to guarantee the mean square convergence. It is shown that the upper bound is dependent on the coupling weights of the complex network. Especially, an optimal step size is obtained to achieve the fastest convergence speed and a suboptimal step size is presented for the purpose of practical implementations. Besides, a coupled kernel recursive least square (KRLS) algorithm is further proposed to improve the filtering performance. Finally, simulations are provided to verify the validity of the theoretical results.
AbstractList This brief is concerned with the problem of kernel adaptive filtering for a complex network. First, a coupled kernel least mean square (KLMS) algorithm is developed for each node to uncover its nonlinear measurement function by using a series of input-output data. Subsequently, an upper bound is derived for the step-size of the coupled KLMS algorithm to guarantee the mean square convergence. It is shown that the upper bound is dependent on the coupling weights of the complex network. Especially, an optimal step size is obtained to achieve the fastest convergence speed and a suboptimal step size is presented for the purpose of practical implementations. Besides, a coupled kernel recursive least square (KRLS) algorithm is further proposed to improve the filtering performance. Finally, simulations are provided to verify the validity of the theoretical results.
This brief is concerned with the problem of kernel adaptive filtering for a complex network. First, a coupled kernel least mean square (KLMS) algorithm is developed for each node to uncover its nonlinear measurement function by using a series of input-output data. Subsequently, an upper bound is derived for the step-size of the coupled KLMS algorithm to guarantee the mean square convergence. It is shown that the upper bound is dependent on the coupling weights of the complex network. Especially, an optimal step size is obtained to achieve the fastest convergence speed and a suboptimal step size is presented for the purpose of practical implementations. Besides, a coupled kernel recursive least square (KRLS) algorithm is further proposed to improve the filtering performance. Finally, simulations are provided to verify the validity of the theoretical results.This brief is concerned with the problem of kernel adaptive filtering for a complex network. First, a coupled kernel least mean square (KLMS) algorithm is developed for each node to uncover its nonlinear measurement function by using a series of input-output data. Subsequently, an upper bound is derived for the step-size of the coupled KLMS algorithm to guarantee the mean square convergence. It is shown that the upper bound is dependent on the coupling weights of the complex network. Especially, an optimal step size is obtained to achieve the fastest convergence speed and a suboptimal step size is presented for the purpose of practical implementations. Besides, a coupled kernel recursive least square (KRLS) algorithm is further proposed to improve the filtering performance. Finally, simulations are provided to verify the validity of the theoretical results.
Author Li, Wenling
Hu, Jun
Sheng, Weiguo
Wang, Zidong
Du, Junping
Author_xml – sequence: 1
  givenname: Wenling
  orcidid: 0000-0002-9130-5736
  surname: Li
  fullname: Li, Wenling
  organization: School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing, China
– sequence: 2
  givenname: Zidong
  orcidid: 0000-0002-9576-7401
  surname: Wang
  fullname: Wang, Zidong
  organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-7852-5064
  surname: Hu
  fullname: Hu, Jun
  organization: Department of Mathematics, Harbin University of Science and Technology, Harbin, China
– sequence: 4
  givenname: Junping
  orcidid: 0000-0001-8590-3767
  surname: Du
  fullname: Du, Junping
  organization: School of Computer Science and Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 5
  givenname: Weiguo
  orcidid: 0000-0001-9680-5126
  surname: Sheng
  fullname: Sheng, Weiguo
  organization: School of Information Science and Engineering, Hangzhou Normal University, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36048973$$D View this record in MEDLINE/PubMed
BookMark eNp9kE9PwjAYhxuDEUS-gCZmiRcvg_7ZuvZIiKiRwEFMvDVd984Ux4btQP32DkEOHHwvfZM-v_aX5xy1yqoEhC4J7hOC5WA-nU6e-xRT2mdESp7IE9ShhNOQMiFahz15baOe9wvcDMcxj-QZajOOIyET1kGDJ3AlFMEw06vabiAY26IGZ8u3YLYBF4yq5aqAr2AK9Wfl3v0FOs114aG3P7voZXw3Hz2Ek9n942g4CQ2LSR1SASTPNMScyTwDI3PMgGZMmtTwTLA4Y9gQrtPcCAYCQ8pNcwk5p0TTVLAuut29u3LVxxp8rZbWGygKXUK19oomuOkvI04b9OYIXVRrVzbtFJWMcYIFSRrqek-t0yVkauXsUrtv9aeiAegOMK7y3kF-QAhWW-XqV7naKld75U1IHIWMrXVtq7J22hb_R692UQsAh7-kSCLBE_YDh-SNOQ
CODEN ITNNAL
CitedBy_id crossref_primary_10_1080_00207721_2024_2423033
crossref_primary_10_1080_00207721_2024_2427249
crossref_primary_10_1109_TCYB_2024_3524515
Cites_doi 10.1109/TSP.2007.907881
10.1109/TAES.2019.2891148
10.1109/TNN.2004.836241
10.1002/9780470608593
10.1109/TCSII.2021.3074643
10.1007/978-3-319-17290-3
10.1109/TNNLS.2011.2178446
10.1109/TCSII.2020.2964688
10.1038/35065725
10.1109/TVT.2018.2888545
10.7551/mitpress/4175.001.0001
10.1016/j.sigpro.2012.04.007
10.1007/978-1-4757-2440-0
10.1016/j.patcog.2018.02.010
10.1162/neco.1991.3.2.213
10.1109/TNNLS.2018.2804895
10.1109/TSP.2009.2022007
10.1016/j.automatica.2017.11.004
10.1109/TSP.2008.917376
10.1109/TCSII.2021.3056452
10.1109/TCSII.2021.3056729
10.1109/TNN.2009.2033676
10.1109/TAC.2018.2791464
10.1109/TSP.2021.3065173
10.1162/089976602317250933
10.1109/TNNLS.2018.2843883
10.1109/TSMC.2018.2876455
10.1155/2008/784292
10.1109/TNNLS.2013.2272594
10.1109/TSP.2012.2186132
10.1109/TSP.2020.2975370
10.1109/TNNLS.2020.2995482
10.1109/TSP.2004.830985
10.1038/s41467-017-01825-5
10.1109/TSIPN.2020.3046217
10.1109/TNNLS.2013.2258936
10.1109/tnnls.2021.3105146
10.1109/TCSI.2019.2920773
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2022.3199679
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 8
ExternalDocumentID 36048973
10_1109_TNNLS_2022_3199679
9874867
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61933007; 61976013; 12171124; 61873148; 61873082
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2018YFB1402600
  funderid: 10.13039/501100012166
– fundername: Alexander von Humboldt Foundation of Germany
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
AGSQL
CITATION
EJD
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-28e1fdae5639fdec9f03e2d39cbc6d835d30c16abfc83e80eb6c39cef621a2b83
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 11:24:49 EDT 2025
Mon Jun 30 05:14:27 EDT 2025
Thu Jul 24 03:24:47 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Wed Oct 01 00:45:09 EDT 2025
Wed Aug 27 02:17:13 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-28e1fdae5639fdec9f03e2d39cbc6d835d30c16abfc83e80eb6c39cef621a2b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9576-7401
0000-0002-9130-5736
0000-0001-8590-3767
0000-0002-7852-5064
0000-0001-9680-5126
PMID 36048973
PQID 2933610817
PQPubID 85436
PageCount 8
ParticipantIDs crossref_primary_10_1109_TNNLS_2022_3199679
ieee_primary_9874867
crossref_citationtrail_10_1109_TNNLS_2022_3199679
proquest_miscellaneous_2709739462
pubmed_primary_36048973
proquest_journals_2933610817
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref5
Haykin (ref10) 1996
ref40
Sayed (ref9) 2003
References_xml – ident: ref11
  doi: 10.1109/TSP.2007.907881
– ident: ref32
  doi: 10.1109/TAES.2019.2891148
– ident: ref5
  doi: 10.1109/TNN.2004.836241
– ident: ref8
  doi: 10.1002/9780470608593
– ident: ref20
  doi: 10.1109/TCSII.2021.3074643
– ident: ref37
  doi: 10.1007/978-3-319-17290-3
– ident: ref24
  doi: 10.1109/TNNLS.2011.2178446
– ident: ref27
  doi: 10.1109/TCSII.2020.2964688
– ident: ref35
  doi: 10.1038/35065725
– ident: ref33
  doi: 10.1109/TVT.2018.2888545
– ident: ref1
  doi: 10.7551/mitpress/4175.001.0001
– ident: ref12
  doi: 10.1016/j.sigpro.2012.04.007
– ident: ref38
  doi: 10.1007/978-1-4757-2440-0
– ident: ref40
  doi: 10.1016/j.patcog.2018.02.010
– volume-title: Fundamentals of Adaptive Filtering
  year: 2003
  ident: ref9
– ident: ref21
  doi: 10.1162/neco.1991.3.2.213
– ident: ref26
  doi: 10.1109/TNNLS.2018.2804895
– ident: ref18
  doi: 10.1109/TSP.2009.2022007
– ident: ref2
  doi: 10.1016/j.automatica.2017.11.004
– ident: ref6
  doi: 10.1109/TSP.2008.917376
– ident: ref14
  doi: 10.1109/TCSII.2021.3056452
– volume-title: Adaptive Filter Theory
  year: 1996
  ident: ref10
– ident: ref28
  doi: 10.1109/TCSII.2021.3056729
– ident: ref23
  doi: 10.1109/TNN.2009.2033676
– ident: ref3
  doi: 10.1109/TAC.2018.2791464
– ident: ref29
  doi: 10.1109/TSP.2021.3065173
– ident: ref22
  doi: 10.1162/089976602317250933
– ident: ref30
  doi: 10.1109/TNNLS.2018.2843883
– ident: ref4
  doi: 10.1109/TSMC.2018.2876455
– ident: ref17
  doi: 10.1155/2008/784292
– ident: ref19
  doi: 10.1109/TNNLS.2013.2272594
– ident: ref13
  doi: 10.1109/TSP.2012.2186132
– ident: ref15
  doi: 10.1109/TSP.2020.2975370
– ident: ref31
  doi: 10.1109/TNNLS.2020.2995482
– ident: ref16
  doi: 10.1109/TSP.2004.830985
– ident: ref36
  doi: 10.1038/s41467-017-01825-5
– ident: ref39
  doi: 10.1109/TSIPN.2020.3046217
– ident: ref25
  doi: 10.1109/TNNLS.2013.2258936
– ident: ref34
  doi: 10.1109/tnnls.2021.3105146
– ident: ref7
  doi: 10.1109/TCSI.2019.2920773
SSID ssj0000605649
Score 2.4896905
Snippet This brief is concerned with the problem of kernel adaptive filtering for a complex network. First, a coupled kernel least mean square (KLMS) algorithm is...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Adaptive filters
Adaptive systems
Algorithms
Complex network
Complex networks
Convergence
Kernel
kernel adaptive filter
Learning systems
least mean square (LMS)
Mathematical models
recursive least square (RLS)
Upper bound
Upper bounds
Title Kernel Adaptive Filtering Over Complex Networks
URI https://ieeexplore.ieee.org/document/9874867
https://www.ncbi.nlm.nih.gov/pubmed/36048973
https://www.proquest.com/docview/2933610817
https://www.proquest.com/docview/2709739462
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJy7l2bKUoiBxo9n1I3HiI6q6Qi0sB0DaW-THREKgLIJdCfHrO3YeUqsW9RbJ4zw848z32eMZgFOi_s5kREs4GkkEheep0YVNkTlHHsjmdaxacjVTF3fZj3k-X4Ovw1kYRIzBZzgOl3Ev3y_cKiyVTYgfhwRx67BelKo9qzWspzDC5SqiXcGVSIUs5v0ZGaYnt7PZ5Q2xQSGIpBLEL0K2UKnIfHUhf3NJscbKv-FmdDvTLbjqX7iNNnkYr5Z27N7-yOX4v1-0DR86_JmctwazA2vY7MJWX9sh6ab6Hkx-4nODJOjNU_gjJtP7sK9Oji65JutPQo9HfE1mbRj5yz7cTb_ffrtIu-IKqZM5X6aiRF57gzlBlNqj0zWTKLzUzjrlCZd5yRxXxtaulFgytMpRI9ZKcCNsKT_CRrNo8ACSzFui2DVTqBn5RGUy4znBNK9EUda6HAHvx7dyXebxUADjsYoMhOkqqqcK6qk69YzgbOjz1ObdeFd6L4ztINkN6wiOejVW3dR8qQjfSMKMJafmk6GZJlXYKTENLlYkU4QsRjpTYgSfWvUP9-6t5vDvz_wMm_RmWRumdgQby-cVfiHcsrTH0WB_AQJJ5S4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALBcpjoUCQuEF2_YqTHBFitdDdcGAr7S3yYyJVVNmq3ZWq_nrGzkMCAeIWyeM8POPM99njGYB3RP2dUURLOBpJBIVnqSlzmyJzjjyQzZpYtWRV6cWZ-rrJNgfwYTwLg4gx-Ayn4TLu5fut24elshnx45Ag7g7czZRSWXdaa1xRYYTMdcS7gmuRCplvhlMyrJytq2r5nfigEERTCeTnIV-o1GTAZS5_cUqxysrfAWd0PPMjWA2v3MWb_Jjud3bqbn_L5vi_3_QQHvQINPnYmcwjOMD2MRwN1R2SfrIfw-wUr1okQW8uwz8xmZ-HnXVydck3sv8k9LjAm6TqAsmvn8DZ_PP60yLtyyukTmZ8l4oCeeMNZgRSGo-ubJhE4WXprNOekJmXzHFtbOMKiQVDqx01YqMFN8IW8ikcttsWn0OivCWS3TCNJSOvqI0ynhNQ81rkRVMWE-DD-Nauzz0eSmBc1JGDsLKO6qmDeupePRN4P_a57DJv_FP6OIztKNkP6wROBjXW_eS8rgnhSEKNBafmt2MzTauwV2Ja3O5JJg95jEqlxQSedeof7z1YzYs_P_MN3FusV8t6-aU6fQn36S1VF7R2Aoe7qz2-IhSzs6-j8f4ELNnoew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+Adaptive+Filtering+Over+Complex+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Li%2C+Wenling&rft.au=Wang%2C+Zidong&rft.au=Hu%2C+Jun&rft.au=Du%2C+Junping&rft.date=2024-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=35&rft.issue=3&rft.spage=4339&rft_id=info:doi/10.1109%2FTNNLS.2022.3199679&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon