Kernel Adaptive Filtering Over Complex Networks
This brief is concerned with the problem of kernel adaptive filtering for a complex network. First, a coupled kernel least mean square (KLMS) algorithm is developed for each node to uncover its nonlinear measurement function by using a series of input-output data. Subsequently, an upper bound is der...
Saved in:
| Published in | IEEE transaction on neural networks and learning systems Vol. 35; no. 3; pp. 1 - 8 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2162-237X 2162-2388 2162-2388 |
| DOI | 10.1109/TNNLS.2022.3199679 |
Cover
| Abstract | This brief is concerned with the problem of kernel adaptive filtering for a complex network. First, a coupled kernel least mean square (KLMS) algorithm is developed for each node to uncover its nonlinear measurement function by using a series of input-output data. Subsequently, an upper bound is derived for the step-size of the coupled KLMS algorithm to guarantee the mean square convergence. It is shown that the upper bound is dependent on the coupling weights of the complex network. Especially, an optimal step size is obtained to achieve the fastest convergence speed and a suboptimal step size is presented for the purpose of practical implementations. Besides, a coupled kernel recursive least square (KRLS) algorithm is further proposed to improve the filtering performance. Finally, simulations are provided to verify the validity of the theoretical results. |
|---|---|
| AbstractList | This brief is concerned with the problem of kernel adaptive filtering for a complex network. First, a coupled kernel least mean square (KLMS) algorithm is developed for each node to uncover its nonlinear measurement function by using a series of input-output data. Subsequently, an upper bound is derived for the step-size of the coupled KLMS algorithm to guarantee the mean square convergence. It is shown that the upper bound is dependent on the coupling weights of the complex network. Especially, an optimal step size is obtained to achieve the fastest convergence speed and a suboptimal step size is presented for the purpose of practical implementations. Besides, a coupled kernel recursive least square (KRLS) algorithm is further proposed to improve the filtering performance. Finally, simulations are provided to verify the validity of the theoretical results. This brief is concerned with the problem of kernel adaptive filtering for a complex network. First, a coupled kernel least mean square (KLMS) algorithm is developed for each node to uncover its nonlinear measurement function by using a series of input-output data. Subsequently, an upper bound is derived for the step-size of the coupled KLMS algorithm to guarantee the mean square convergence. It is shown that the upper bound is dependent on the coupling weights of the complex network. Especially, an optimal step size is obtained to achieve the fastest convergence speed and a suboptimal step size is presented for the purpose of practical implementations. Besides, a coupled kernel recursive least square (KRLS) algorithm is further proposed to improve the filtering performance. Finally, simulations are provided to verify the validity of the theoretical results.This brief is concerned with the problem of kernel adaptive filtering for a complex network. First, a coupled kernel least mean square (KLMS) algorithm is developed for each node to uncover its nonlinear measurement function by using a series of input-output data. Subsequently, an upper bound is derived for the step-size of the coupled KLMS algorithm to guarantee the mean square convergence. It is shown that the upper bound is dependent on the coupling weights of the complex network. Especially, an optimal step size is obtained to achieve the fastest convergence speed and a suboptimal step size is presented for the purpose of practical implementations. Besides, a coupled kernel recursive least square (KRLS) algorithm is further proposed to improve the filtering performance. Finally, simulations are provided to verify the validity of the theoretical results. |
| Author | Li, Wenling Hu, Jun Sheng, Weiguo Wang, Zidong Du, Junping |
| Author_xml | – sequence: 1 givenname: Wenling orcidid: 0000-0002-9130-5736 surname: Li fullname: Li, Wenling organization: School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing, China – sequence: 2 givenname: Zidong orcidid: 0000-0002-9576-7401 surname: Wang fullname: Wang, Zidong organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China – sequence: 3 givenname: Jun orcidid: 0000-0002-7852-5064 surname: Hu fullname: Hu, Jun organization: Department of Mathematics, Harbin University of Science and Technology, Harbin, China – sequence: 4 givenname: Junping orcidid: 0000-0001-8590-3767 surname: Du fullname: Du, Junping organization: School of Computer Science and Technology, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 5 givenname: Weiguo orcidid: 0000-0001-9680-5126 surname: Sheng fullname: Sheng, Weiguo organization: School of Information Science and Engineering, Hangzhou Normal University, Hangzhou, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36048973$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE9PwjAYhxuDEUS-gCZmiRcvg_7ZuvZIiKiRwEFMvDVd984Ux4btQP32DkEOHHwvfZM-v_aX5xy1yqoEhC4J7hOC5WA-nU6e-xRT2mdESp7IE9ShhNOQMiFahz15baOe9wvcDMcxj-QZajOOIyET1kGDJ3AlFMEw06vabiAY26IGZ8u3YLYBF4yq5aqAr2AK9Wfl3v0FOs114aG3P7voZXw3Hz2Ek9n942g4CQ2LSR1SASTPNMScyTwDI3PMgGZMmtTwTLA4Y9gQrtPcCAYCQ8pNcwk5p0TTVLAuut29u3LVxxp8rZbWGygKXUK19oomuOkvI04b9OYIXVRrVzbtFJWMcYIFSRrqek-t0yVkauXsUrtv9aeiAegOMK7y3kF-QAhWW-XqV7naKld75U1IHIWMrXVtq7J22hb_R692UQsAh7-kSCLBE_YDh-SNOQ |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1080_00207721_2024_2423033 crossref_primary_10_1080_00207721_2024_2427249 crossref_primary_10_1109_TCYB_2024_3524515 |
| Cites_doi | 10.1109/TSP.2007.907881 10.1109/TAES.2019.2891148 10.1109/TNN.2004.836241 10.1002/9780470608593 10.1109/TCSII.2021.3074643 10.1007/978-3-319-17290-3 10.1109/TNNLS.2011.2178446 10.1109/TCSII.2020.2964688 10.1038/35065725 10.1109/TVT.2018.2888545 10.7551/mitpress/4175.001.0001 10.1016/j.sigpro.2012.04.007 10.1007/978-1-4757-2440-0 10.1016/j.patcog.2018.02.010 10.1162/neco.1991.3.2.213 10.1109/TNNLS.2018.2804895 10.1109/TSP.2009.2022007 10.1016/j.automatica.2017.11.004 10.1109/TSP.2008.917376 10.1109/TCSII.2021.3056452 10.1109/TCSII.2021.3056729 10.1109/TNN.2009.2033676 10.1109/TAC.2018.2791464 10.1109/TSP.2021.3065173 10.1162/089976602317250933 10.1109/TNNLS.2018.2843883 10.1109/TSMC.2018.2876455 10.1155/2008/784292 10.1109/TNNLS.2013.2272594 10.1109/TSP.2012.2186132 10.1109/TSP.2020.2975370 10.1109/TNNLS.2020.2995482 10.1109/TSP.2004.830985 10.1038/s41467-017-01825-5 10.1109/TSIPN.2020.3046217 10.1109/TNNLS.2013.2258936 10.1109/tnnls.2021.3105146 10.1109/TCSI.2019.2920773 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2022.3199679 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 8 |
| ExternalDocumentID | 36048973 10_1109_TNNLS_2022_3199679 9874867 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61933007; 61976013; 12171124; 61873148; 61873082 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2018YFB1402600 funderid: 10.13039/501100012166 – fundername: Alexander von Humboldt Foundation of Germany |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX AGSQL CITATION EJD NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-28e1fdae5639fdec9f03e2d39cbc6d835d30c16abfc83e80eb6c39cef621a2b83 |
| IEDL.DBID | RIE |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sun Sep 28 11:24:49 EDT 2025 Mon Jun 30 05:14:27 EDT 2025 Thu Jul 24 03:24:47 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Wed Oct 01 00:45:09 EDT 2025 Wed Aug 27 02:17:13 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-28e1fdae5639fdec9f03e2d39cbc6d835d30c16abfc83e80eb6c39cef621a2b83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9576-7401 0000-0002-9130-5736 0000-0001-8590-3767 0000-0002-7852-5064 0000-0001-9680-5126 |
| PMID | 36048973 |
| PQID | 2933610817 |
| PQPubID | 85436 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1109_TNNLS_2022_3199679 ieee_primary_9874867 crossref_citationtrail_10_1109_TNNLS_2022_3199679 proquest_miscellaneous_2709739462 pubmed_primary_36048973 proquest_journals_2933610817 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref4 ref3 ref6 ref5 Haykin (ref10) 1996 ref40 Sayed (ref9) 2003 |
| References_xml | – ident: ref11 doi: 10.1109/TSP.2007.907881 – ident: ref32 doi: 10.1109/TAES.2019.2891148 – ident: ref5 doi: 10.1109/TNN.2004.836241 – ident: ref8 doi: 10.1002/9780470608593 – ident: ref20 doi: 10.1109/TCSII.2021.3074643 – ident: ref37 doi: 10.1007/978-3-319-17290-3 – ident: ref24 doi: 10.1109/TNNLS.2011.2178446 – ident: ref27 doi: 10.1109/TCSII.2020.2964688 – ident: ref35 doi: 10.1038/35065725 – ident: ref33 doi: 10.1109/TVT.2018.2888545 – ident: ref1 doi: 10.7551/mitpress/4175.001.0001 – ident: ref12 doi: 10.1016/j.sigpro.2012.04.007 – ident: ref38 doi: 10.1007/978-1-4757-2440-0 – ident: ref40 doi: 10.1016/j.patcog.2018.02.010 – volume-title: Fundamentals of Adaptive Filtering year: 2003 ident: ref9 – ident: ref21 doi: 10.1162/neco.1991.3.2.213 – ident: ref26 doi: 10.1109/TNNLS.2018.2804895 – ident: ref18 doi: 10.1109/TSP.2009.2022007 – ident: ref2 doi: 10.1016/j.automatica.2017.11.004 – ident: ref6 doi: 10.1109/TSP.2008.917376 – ident: ref14 doi: 10.1109/TCSII.2021.3056452 – volume-title: Adaptive Filter Theory year: 1996 ident: ref10 – ident: ref28 doi: 10.1109/TCSII.2021.3056729 – ident: ref23 doi: 10.1109/TNN.2009.2033676 – ident: ref3 doi: 10.1109/TAC.2018.2791464 – ident: ref29 doi: 10.1109/TSP.2021.3065173 – ident: ref22 doi: 10.1162/089976602317250933 – ident: ref30 doi: 10.1109/TNNLS.2018.2843883 – ident: ref4 doi: 10.1109/TSMC.2018.2876455 – ident: ref17 doi: 10.1155/2008/784292 – ident: ref19 doi: 10.1109/TNNLS.2013.2272594 – ident: ref13 doi: 10.1109/TSP.2012.2186132 – ident: ref15 doi: 10.1109/TSP.2020.2975370 – ident: ref31 doi: 10.1109/TNNLS.2020.2995482 – ident: ref16 doi: 10.1109/TSP.2004.830985 – ident: ref36 doi: 10.1038/s41467-017-01825-5 – ident: ref39 doi: 10.1109/TSIPN.2020.3046217 – ident: ref25 doi: 10.1109/TNNLS.2013.2258936 – ident: ref34 doi: 10.1109/tnnls.2021.3105146 – ident: ref7 doi: 10.1109/TCSI.2019.2920773 |
| SSID | ssj0000605649 |
| Score | 2.4896905 |
| Snippet | This brief is concerned with the problem of kernel adaptive filtering for a complex network. First, a coupled kernel least mean square (KLMS) algorithm is... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptive filters Adaptive systems Algorithms Complex network Complex networks Convergence Kernel kernel adaptive filter Learning systems least mean square (LMS) Mathematical models recursive least square (RLS) Upper bound Upper bounds |
| Title | Kernel Adaptive Filtering Over Complex Networks |
| URI | https://ieeexplore.ieee.org/document/9874867 https://www.ncbi.nlm.nih.gov/pubmed/36048973 https://www.proquest.com/docview/2933610817 https://www.proquest.com/docview/2709739462 |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJy7l2bKUoiBxo9n1I3HiI6q6Qi0sB0DaW-THREKgLIJdCfHrO3YeUqsW9RbJ4zw848z32eMZgFOi_s5kREs4GkkEheep0YVNkTlHHsjmdaxacjVTF3fZj3k-X4Ovw1kYRIzBZzgOl3Ev3y_cKiyVTYgfhwRx67BelKo9qzWspzDC5SqiXcGVSIUs5v0ZGaYnt7PZ5Q2xQSGIpBLEL0K2UKnIfHUhf3NJscbKv-FmdDvTLbjqX7iNNnkYr5Z27N7-yOX4v1-0DR86_JmctwazA2vY7MJWX9sh6ab6Hkx-4nODJOjNU_gjJtP7sK9Oji65JutPQo9HfE1mbRj5yz7cTb_ffrtIu-IKqZM5X6aiRF57gzlBlNqj0zWTKLzUzjrlCZd5yRxXxtaulFgytMpRI9ZKcCNsKT_CRrNo8ACSzFui2DVTqBn5RGUy4znBNK9EUda6HAHvx7dyXebxUADjsYoMhOkqqqcK6qk69YzgbOjz1ObdeFd6L4ztINkN6wiOejVW3dR8qQjfSMKMJafmk6GZJlXYKTENLlYkU4QsRjpTYgSfWvUP9-6t5vDvz_wMm_RmWRumdgQby-cVfiHcsrTH0WB_AQJJ5S4 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALBcpjoUCQuEF2_YqTHBFitdDdcGAr7S3yYyJVVNmq3ZWq_nrGzkMCAeIWyeM8POPM99njGYB3RP2dUURLOBpJBIVnqSlzmyJzjjyQzZpYtWRV6cWZ-rrJNgfwYTwLg4gx-Ayn4TLu5fut24elshnx45Ag7g7czZRSWXdaa1xRYYTMdcS7gmuRCplvhlMyrJytq2r5nfigEERTCeTnIV-o1GTAZS5_cUqxysrfAWd0PPMjWA2v3MWb_Jjud3bqbn_L5vi_3_QQHvQINPnYmcwjOMD2MRwN1R2SfrIfw-wUr1okQW8uwz8xmZ-HnXVydck3sv8k9LjAm6TqAsmvn8DZ_PP60yLtyyukTmZ8l4oCeeMNZgRSGo-ubJhE4WXprNOekJmXzHFtbOMKiQVDqx01YqMFN8IW8ikcttsWn0OivCWS3TCNJSOvqI0ynhNQ81rkRVMWE-DD-Nauzz0eSmBc1JGDsLKO6qmDeupePRN4P_a57DJv_FP6OIztKNkP6wROBjXW_eS8rgnhSEKNBafmt2MzTauwV2Ja3O5JJg95jEqlxQSedeof7z1YzYs_P_MN3FusV8t6-aU6fQn36S1VF7R2Aoe7qz2-IhSzs6-j8f4ELNnoew |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+Adaptive+Filtering+Over+Complex+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Li%2C+Wenling&rft.au=Wang%2C+Zidong&rft.au=Hu%2C+Jun&rft.au=Du%2C+Junping&rft.date=2024-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=35&rft.issue=3&rft.spage=4339&rft_id=info:doi/10.1109%2FTNNLS.2022.3199679&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |