Kernel Adaptive Filtering Over Complex Networks

This brief is concerned with the problem of kernel adaptive filtering for a complex network. First, a coupled kernel least mean square (KLMS) algorithm is developed for each node to uncover its nonlinear measurement function by using a series of input-output data. Subsequently, an upper bound is der...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 3; pp. 1 - 8
Main Authors Li, Wenling, Wang, Zidong, Hu, Jun, Du, Junping, Sheng, Weiguo
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2022.3199679

Cover

More Information
Summary:This brief is concerned with the problem of kernel adaptive filtering for a complex network. First, a coupled kernel least mean square (KLMS) algorithm is developed for each node to uncover its nonlinear measurement function by using a series of input-output data. Subsequently, an upper bound is derived for the step-size of the coupled KLMS algorithm to guarantee the mean square convergence. It is shown that the upper bound is dependent on the coupling weights of the complex network. Especially, an optimal step size is obtained to achieve the fastest convergence speed and a suboptimal step size is presented for the purpose of practical implementations. Besides, a coupled kernel recursive least square (KRLS) algorithm is further proposed to improve the filtering performance. Finally, simulations are provided to verify the validity of the theoretical results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2022.3199679