Adaptive Critic for Event-Triggered Unknown Nonlinear Optimal Tracking Design With Wastewater Treatment Applications

In this article, an event-based near-optimal tracking control algorithm is developed for a class of nonaffine systems. First, in order to gain the tracking control strategy, the costate function is established through the iterative dual heuristic dynamic programming (DHP) algorithm. Then, the event-...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 9; pp. 6276 - 6288
Main Authors Wang, Ding, Hu, Lingzhi, Zhao, Mingming, Qiao, Junfei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2021.3135405

Cover

More Information
Summary:In this article, an event-based near-optimal tracking control algorithm is developed for a class of nonaffine systems. First, in order to gain the tracking control strategy, the costate function is established through the iterative dual heuristic dynamic programming (DHP) algorithm. Then, the event-based control method is employed to improve the utilization efficiency of resources and ensure that the closed-loop system has an excellent control performance. Meanwhile, the input-to-state stability (ISS) is proven for the event-based tracking plant. In addition, three kinds of neural networks are used in the event-based DHP algorithm, which aims to identify the nonaffine nonlinear system, estimate the costate function, and approximate the tracking control law. Finally, a numerical experimental simulation is conducted to verify the effectiveness of the proposed scheme. Moreover, in order to further validate the feasibility, the algorithm is applied to the wastewater treatment plant to effectively control the concentrations of dissolved oxygen and nitrate nitrogen.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2021.3135405