Perspective-Adaptive Convolutions for Scene Parsing

Many existing scene parsing methods adopt Convolutional Neural Networks with receptive fields of fixed sizes and shapes, which frequently results in inconsistent predictions of large objects and invisibility of small objects. To tackle this issue, we propose perspective-adaptive convolutions to acqu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 42; no. 4; pp. 909 - 924
Main Authors Zhang, Rui, Tang, Sheng, Zhang, Yongdong, Li, Jintao, Yan, Shuicheng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
2160-9292
1939-3539
DOI10.1109/TPAMI.2018.2890637

Cover

More Information
Summary:Many existing scene parsing methods adopt Convolutional Neural Networks with receptive fields of fixed sizes and shapes, which frequently results in inconsistent predictions of large objects and invisibility of small objects. To tackle this issue, we propose perspective-adaptive convolutions to acquire receptive fields of flexible sizes and shapes during scene parsing. Through adding a new perspective regression layer, we can dynamically infer the position-adaptive perspective coefficient vectors utilized to reshape the convolutional patches. Consequently, the receptive fields can be adjusted automatically according to the various sizes and perspective deformations of the objects in scene images. Our proposed convolutions are differentiable to learn the convolutional parameters and perspective coefficients in an end-to-end way without any extra training supervision of object sizes. Furthermore, considering that the standard convolutions lack contextual information and spatial dependencies, we propose a context adaptive bias to capture both local and global contextual information through average pooling on the local feature patches and global feature maps, followed by flexible attentive summing to the convolutional results. The attentive weights are position-adaptive and context-aware, and can be learned through adding an additional context regression layer. Experiments on Cityscapes and ADE20K datasets well demonstrate the effectiveness of the proposed methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
1939-3539
DOI:10.1109/TPAMI.2018.2890637