A Two-Timescale Duplex Neurodynamic Approach to Mixed-Integer Optimization

This article presents a two-timescale duplex neurodynamic approach to mixed-integer optimization, based on a biconvex optimization problem reformulation with additional bilinear equality or inequality constraints. The proposed approach employs two recurrent neural networks operating concurrently at...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 32; no. 1; pp. 36 - 48
Main Authors Che, Hangjun, Wang, Jun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2020.2973760

Cover

More Information
Summary:This article presents a two-timescale duplex neurodynamic approach to mixed-integer optimization, based on a biconvex optimization problem reformulation with additional bilinear equality or inequality constraints. The proposed approach employs two recurrent neural networks operating concurrently at two timescales. In addition, particle swarm optimization is used to update the initial neuronal states iteratively to escape from local minima toward better initial states. In spite of its minimal system complexity, the approach is proven to be almost surely convergent to optimal solutions. Its superior performance is substantiated via solving five benchmark problems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2020.2973760