Toward Better Structure and Constraint to Mine Negative Sequential Patterns

Nonoccurring behavior (NOB) studies have attracted the growing attention of scholars as a crucial part of behavioral science. As an effective method to discover both NOB and occurring behaviors (OB), negative sequential pattern (NSP) mining is successfully used in analyzing medical treatment and abn...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 2; pp. 571 - 585
Main Authors Gao, Xinming, Gong, Yongshun, Xu, TianTian, Lu, Jinhu, Zhao, Yuhai, Dong, Xiangjun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2020.3041732

Cover

More Information
Summary:Nonoccurring behavior (NOB) studies have attracted the growing attention of scholars as a crucial part of behavioral science. As an effective method to discover both NOB and occurring behaviors (OB), negative sequential pattern (NSP) mining is successfully used in analyzing medical treatment and abnormal behavior patterns. At this time, NSP mining is still an active and challenging research domain. Most of the algorithms are inefficient in practice. Briefly, the key weaknesses of NSP mining are: 1) an inefficient positive sequential pattern (PSP) mining process, 2) a strict constraint of negative containment, and 3) the lack of an effective Negative Sequential Candidate (NSC) generation method. To address these weaknesses, we propose a highly efficient algorithm with improved techniques, named sc-NSP, to mine NSP efficiently. We first propose an improved PrefixSpan algorithm in the PSP mining process, which connects to a bitmap storage structure instead of the original structure. Second, sc-NSP loosens the frequency constraint and exploits the NSC generation method of positive and negative sequential patterns mining (PNSP) (a classic NSP mining method). Furthermore, a novel pruning strategy is designed to reduce the computational complexity of sc-NSP. Finally, sc-NSP obtains the support of NSC by using the most efficient bitwise-based calculation operation. Theoretical analyses show that sc-NSP performs particularly well on data sets with a large number of elements and items in sequence. Comparison and extensive experiments along with case studies on health data show that sc-NSP is 10 times more efficient than other state-of-the-art methods, and the number of NSPs obtained is 5 times greater than other methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2020.3041732