Composite Learning Adaptive Tracking Control for Full-State Constrained Multiagent Systems Without Using the Feasibility Condition
This article proposes a distributed consensus tracking controller for a class of nonlinear multiagent systems under a directed graph, in which all agents are subject to time-varying asymmetric full-state constraints, internal uncertainties, and external disturbances. The feasibility condition genera...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 35; no. 2; pp. 2460 - 2472 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2022.3190286 |
Cover
Summary: | This article proposes a distributed consensus tracking controller for a class of nonlinear multiagent systems under a directed graph, in which all agents are subject to time-varying asymmetric full-state constraints, internal uncertainties, and external disturbances. The feasibility condition generally required in the existing constrained control is removed by using the proposed nonlinear mapping function (NMF)-based state reconstruction technology, and the Lipschitz condition usually needed in the consensus tracking is also canceled based on the adaptive command-filtered backstepping framework. The composite learning of the neural network-based function approximator (NN-FAP) and the finite-time smooth disturbance observer (DOB) provides a novel scheme for handling internal and external uncertainties simultaneously. One advantage of this scheme is that the use of online historical data of the closed-loop system strengthens the excitation of NN's learning. Another advantage is that the DOB with NN-FAP embedding realizes that the finite-time observation for external disturbance in the case of the system dynamics is unknown. A complete controller design, sufficient stability analysis, and numerical simulation are provided. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2022.3190286 |