The NLO jet vertex in the small-cone approximation for kt and cone algorithms
A bstract We determine the jet vertex for Mueller-Navelet jets and forward jets in the small-cone approximation for two particular choices of jet algoritms: the kt algorithm and the cone algorithm. These choices are motivated by the extensive use of such algorithms in the phenomenology of jets. The...
Saved in:
| Published in | The journal of high energy physics Vol. 2015; no. 4; p. 1 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2015
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1029-8479 1126-6708 1127-2236 1029-8479 |
| DOI | 10.1007/JHEP04(2015)071 |
Cover
| Summary: | A
bstract
We determine the jet vertex for Mueller-Navelet jets and forward jets in the small-cone approximation for two particular choices of jet algoritms: the kt algorithm and the cone algorithm. These choices are motivated by the extensive use of such algorithms in the phenomenology of jets. The differences with the original calculations of the small-cone jet vertex by Ivanov and Papa, which is found to be equivalent to a formerly algorithm proposed by Furman, are shown at both analytic and numerical level, and turn out to be sizeable. A detailed numerical study of the error introduced by the small-cone approximation is also presented, for various observables of phenomenological interest. For values of the jet “radius”
R
= 0
.
5, the use of the small-cone approximation amounts to an error of about 5% at the level of cross section, while it reduces to less than 2% for ratios of distributions such as those involved in the measure of the azimuthal decorrelation of dijets. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 1029-8479 1126-6708 1127-2236 1029-8479 |
| DOI: | 10.1007/JHEP04(2015)071 |