Effects of substrate preheating during direct energy deposition on microstructure, hardness, tensile strength, and notch toughness

This study examined the effects of substrate preheating for the hardfacing of cold-press dies using the high-speed tool steel AISI M4. The preheating of the substrate is a widely used technique for reducing the degree of thermal deformation and preventing crack formation. We investigated the changes...

Full description

Saved in:
Bibliographic Details
Published inMetals and materials international Vol. 23; no. 6; pp. 1204 - 1215
Main Authors Baek, Gyeong Yun, Lee, Ki Yong, Park, Sang Hu, Shim, Do Sik
Format Journal Article
LanguageEnglish
Published Seoul The Korean Institute of Metals and Materials 01.11.2017
Springer Nature B.V
대한금속·재료학회
Subjects
Online AccessGet full text
ISSN1598-9623
2005-4149
DOI10.1007/s12540-017-7049-2

Cover

More Information
Summary:This study examined the effects of substrate preheating for the hardfacing of cold-press dies using the high-speed tool steel AISI M4. The preheating of the substrate is a widely used technique for reducing the degree of thermal deformation and preventing crack formation. We investigated the changes in the metallurgical and mechanical properties of the high-speed tool steel M4 deposited on an AISI D2 substrate with changes in the substrate preheating temperature. Five preheating temperatures (100-500 °C; interval of 100 °C) were selected, and the changes in the temperature of the substrate during deposition were observed. As the preheating temperature of the substrate was increased, the temperature gradient between the melting layer and the substrate decreased; this prevented the formation of internal cracks, owing to thermal stress relief. Field-emission scanning electron microscopy showed that a dendritic structure was formed at the interface between the deposited layer and the substrate while a cellular microstructure was formed in the deposited layer. As the preheating temperature was increased, the sizes of the cells and precipitated carbides also increased. Furthermore, the hardness increased slightly while the strength and toughness decreased. Moreover, the tensile and impact properties deteriorated rapidly at excessively high preheating temperatures (greater than 500 °C). The results of this study can be used as preheating criteria for achieving the desired mechanical properties during the hardfacing of dies and molds.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1598-9623
2005-4149
DOI:10.1007/s12540-017-7049-2