Missing Output Identification Model Based Recursive Least Squares Algorithm for a Distributed Parameter System

This paper proposes a recursive least squares algorithm for a distributed parameter system with missing observations. By using the finite difference method, the distributed parameter system can be turned into a lumped parameter system. Then a missing output identification model based recursive least...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of control, automation, and systems Vol. 16; no. 1; pp. 150 - 157
Main Authors Chen, Jing, Jiang, Bin, Li, Juan
Format Journal Article
LanguageEnglish
Published Bucheon / Seoul Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers 01.02.2018
Springer Nature B.V
제어·로봇·시스템학회
Subjects
Online AccessGet full text
ISSN1598-6446
2005-4092
DOI10.1007/s12555-016-0606-5

Cover

More Information
Summary:This paper proposes a recursive least squares algorithm for a distributed parameter system with missing observations. By using the finite difference method, the distributed parameter system can be turned into a lumped parameter system. Then a missing output identification model based recursive least squares algorithm is derived to estimate the unknown parameters of the lumped parameter system. Furthermore, the parameters of the distributed parameter system can be computed by the estimated parameters of the lumped parameter system. The simulation results indicate that the proposed method is effective.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
http://link.springer.com/article/10.1007/s12555-016-0606-5
ISSN:1598-6446
2005-4092
DOI:10.1007/s12555-016-0606-5