Clustering-Fusion Feature Selection Method in Identifying Major Depressive Disorder Based on Resting State EEG Signals
Depression is a heterogeneous syndrome with certain individual differences among subjects. Exploring a feature selection method that can effectively mine the commonness intra-groups and the differences inter-groups in depression recognition is therefore of great significance. This study proposed a n...
Saved in:
| Published in | IEEE journal of biomedical and health informatics Vol. 27; no. 7; pp. 3152 - 3163 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2194 2168-2208 2168-2208 |
| DOI | 10.1109/JBHI.2023.3269814 |
Cover
| Summary: | Depression is a heterogeneous syndrome with certain individual differences among subjects. Exploring a feature selection method that can effectively mine the commonness intra-groups and the differences inter-groups in depression recognition is therefore of great significance. This study proposed a new clustering-fusion feature selection method. Hierarchical clustering (HC) algorithm was used to capture the heterogeneity distribution of subjects. Average and similarity network fusion (SNF) algorithms were adopted to characterize the brain network atlas of different populations. Differences analysis was also utilized to obtain the features with discriminant performance. Experiments showed that compared with traditional feature selection methods, HCSNF method yielded the optimal classification results of depression recognition in both sensor and source layers of electroencephalography (EEG) data. Especially in the beta band of EEG data at sensor layer, the classification performance was improved by more than 6%. Moreover, the long-distance connections between parietal-occipital lobe and other brain regions not only have high discriminative power, but also significantly correlate with depressive symptoms, indicating the important role of these features in depression recognition. Therefore, this study may provide methodological guidance for the discovery of reproducible electrophysiological biomarkers and new insights into common neuropathological mechanisms of heterogeneous depression diseases. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2168-2194 2168-2208 2168-2208 |
| DOI: | 10.1109/JBHI.2023.3269814 |