Enhanced ethanol sensing properties of TeO2/In2O3 core–shell nanorod sensors

TeO2/In2O3 core–shell nanorods were fabricated using thermal evaporation and sputtering methods. The multiple networked TeO2/In2O3 core–shell nanorod sensor showed responses of 227–632%, response times of 50–160 s, and recovery times of 190–220 s at ethanol (C2H5OH) concentrations of 50–250 ppm at 3...

Full description

Saved in:
Bibliographic Details
Published inCurrent applied physics Vol. 13; no. 5; pp. 919 - 924
Main Authors Ko, Hyunsung, Park, Sunghoon, An, Soyeon, Lee, Chongmu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2013
한국물리학회
Subjects
Online AccessGet full text
ISSN1567-1739
1878-1675
DOI10.1016/j.cap.2013.01.020

Cover

Abstract TeO2/In2O3 core–shell nanorods were fabricated using thermal evaporation and sputtering methods. The multiple networked TeO2/In2O3 core–shell nanorod sensor showed responses of 227–632%, response times of 50–160 s, and recovery times of 190–220 s at ethanol (C2H5OH) concentrations of 50–250 ppm at 300 °C. The response values are 1.6–2.9 times higher and the response and recovery times are also considerably shorter than those of the pristine TeO2 nanorod sensor over the same C2H5OH concentration range. The origin of the enhanced ethanol sensing properties of the core–shell nanorod sensor is discussed. ► TeO2/In2O3 core–shell nanorods were fabricated. ► The core–shell nanorods showed enhanced sensitivity. ► The core–shell nanorods showed higher sensing speed than the pristine TeO2 nanorods. ► The origin of the enhanced sensing properties of the core–shell nanorods is discussed.
AbstractList TeO₂/In₂O₃ core–shell nanorods were fabricated using thermal evaporation and sputtering methods. The multiple networked TeO₂/In₂O₃ core–shell nanorod sensor showed responses of 227–632%, response times of 50–160 s, and recovery times of 190–220 s at ethanol (C₂H₅OH) concentrations of 50–250 ppm at 300 °C. The response values are 1.6–2.9 times higher and the response and recovery times are also considerably shorter than those of the pristine TeO₂ nanorod sensor over the same C₂H₅OH concentration range. The origin of the enhanced ethanol sensing properties of the core–shell nanorod sensor is discussed.
TeO2/In2O3 core-shell nanorods were fabricated using thermal evaporation and sputtering methods. The multiple networked TeO2/In2O3 core-shell nanorod sensor showed responses of 227a632%, response times of 50a160ANBs, and recovery times of 190a220ANBs at ethanol (C2H5OH) concentrations of 50a250ANBppm at 300ANB degree C. The response values are 1.6a2.9 times higher and the response and recovery times are also considerably shorter than those of the pristine TeO2 nanorod sensor over the same C2H5OH concentration range. The origin of the enhanced ethanol sensing properties of the core-shell nanorod sensor is discussed.
TeO2/In2O3 core–shell nanorods were fabricated using thermal evaporation and sputtering methods. The multiple networked TeO2/In2O3 core–shell nanorod sensor showed responses of 227–632%, response times of 50–160 s, and recovery times of 190–220 s at ethanol (C2H5OH) concentrations of 50–250 ppm at 300 °C. The response values are 1.6–2.9 times higher and the response and recovery times are also considerably shorter than those of the pristine TeO2 nanorod sensor over the same C2H5OH concentration range. The origin of the enhanced ethanol sensing properties of the core–shell nanorod sensor is discussed. ► TeO2/In2O3 core–shell nanorods were fabricated. ► The core–shell nanorods showed enhanced sensitivity. ► The core–shell nanorods showed higher sensing speed than the pristine TeO2 nanorods. ► The origin of the enhanced sensing properties of the core–shell nanorods is discussed.
TeO₂/In₂O₃ core–shell nanorods were fabricated using thermal evaporation and sputtering methods. The multiple networked TeO₂/In₂O₃ core–shell nanorod sensor showed responses of 227–632%, response times of 50–160 s, and recovery times of 190–220 s at ethanol (C₂H₅OH) concentrations of 50–250 ppm at 300 °C. The response values are 1.6–2.9 times higher and the response and recovery times are also considerably shorter than those of the pristine TeO₂ nanorod sensor over the same C₂H₅OH concentration range. The origin of the enhanced ethanol sensing properties of the core–shell nanorod sensor is discussed.
TeO2/In2O3 coreeshell nanorods were fabricated using thermal evaporation and sputtering methods. The multiple networked TeO2/In2O3 coreeshell nanorod sensor showed responses of 227-632%, response times of 50-160 s, and recovery times of 190-220 s at ethanol (C2H5OH) concentrations of 50-250 ppm at 300 ℃. The response values are 1.6-2.9 times higher and the response and recovery times are also considerably shorter than those of the pristine TeO2 nanorod sensor over the same C2H5OH concentration range. The origin of the enhanced ethanol sensing properties of the coreeshell nanorod sensor is discussed. KCI Citation Count: 13
Author Lee, Chongmu
Ko, Hyunsung
An, Soyeon
Park, Sunghoon
Author_xml – sequence: 1
  givenname: Hyunsung
  surname: Ko
  fullname: Ko, Hyunsung
– sequence: 2
  givenname: Sunghoon
  surname: Park
  fullname: Park, Sunghoon
– sequence: 3
  givenname: Soyeon
  surname: An
  fullname: An, Soyeon
– sequence: 4
  givenname: Chongmu
  surname: Lee
  fullname: Lee, Chongmu
  email: cmlee@inha.ac.kr
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001790794$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqFkc9O3DAQhy1EJf6UB-ipOXJJsGM7dtQTQhRWQl2pLOeR4x0vXoK92KFSb30H3pAnqZetVKkHepqx9H1je35HZD_EgIR8YrRhlHVn68aaTdNSxhvKGtrSPXLItNI165TcL73sVM0U7w_IUc5rWhxBxSH5dhnuTbC4rHAqTRyrjCH7sKo2KW4wTR5zFV21wHl7NgvtnFc2Jnz99ZLvcRyrUJwUl29WTPkj-eDMmPHkTz0md18vFxfX9c38anZxflNbLulUKzGIgapycHJQVHCnxZK1spXaCIO9dkx1_dANxlDJ-8Fg2zsnmKEaUXSOH5PT3dyQHDxYD9H4t7qK8JDg_PtiBoxyzrq_aPnQ0zPmCR59tuXtJmB8zlAWpKXshBT_R7nohdRabVG2Q22KOSd0sEn-0aSf5VrYJgJrKInANhGgDEoixVH_ONZPZvIxTMn48V3z8850JoJZJZ_h7rYAsuTIOW91Ib7sCCxb_-ExQbYet8H6hHaCZfTvzP8NVMuv4A
CitedBy_id crossref_primary_10_1021_acsaelm_1c00035
crossref_primary_10_1039_C5RA06531C
crossref_primary_10_1016_j_matpr_2023_07_325
crossref_primary_10_1109_JSEN_2016_2577023
crossref_primary_10_1016_j_ceramint_2016_06_145
crossref_primary_10_1016_j_ceramint_2022_06_140
crossref_primary_10_1016_j_mssp_2014_12_065
crossref_primary_10_1016_j_sna_2016_10_022
crossref_primary_10_1039_C7RA01852E
crossref_primary_10_1039_C4RA10497H
crossref_primary_10_1016_j_snb_2017_04_090
crossref_primary_10_1016_j_snb_2018_01_015
crossref_primary_10_1016_j_snb_2020_128734
crossref_primary_10_3390_s20123353
crossref_primary_10_1016_j_cap_2017_11_022
crossref_primary_10_1016_j_cplett_2019_03_018
crossref_primary_10_1016_j_ceramint_2021_07_228
crossref_primary_10_1016_j_cap_2015_09_005
crossref_primary_10_1016_j_ceramint_2015_12_179
Cites_doi 10.1063/1.2140091
10.1016/j.snb.2011.11.006
10.1002/ange.200353238
10.1134/1.1809706
10.1016/0925-4005(91)80213-4
10.1063/1.331230
10.1002/pssa.2210670242
10.3390/s20800347
10.1023/A:1014405811371
10.1016/j.tsf.2011.04.183
10.1016/0925-4005(91)80007-7
10.1016/S0038-1098(99)00015-0
10.1016/j.snb.2006.02.008
10.1016/j.snb.2007.10.018
10.1016/j.snb.2005.11.032
10.1016/j.snb.2007.03.034
10.1021/cg900269a
10.1016/0925-4005(91)80207-Z
10.1103/PhysRevLett.91.205503
10.1023/A:1008717003930
10.1021/nl061197h
10.1016/j.snb.2011.09.065
10.1016/j.mseb.2003.11.014
10.1016/S0009-2614(01)01372-0
10.1063/1.1507835
10.1016/S0009-2614(00)01326-9
10.1063/1.1660950
10.1016/S1381-1169(99)00334-9
10.1021/nl0705438
10.1103/PhysRev.140.A316
10.1063/1.1435073
10.1016/j.snb.2011.11.024
10.1016/j.snb.2006.08.028
10.1063/1.2732818
10.1016/j.snb.2012.08.065
10.1021/am100707h
10.1143/JJAP.47.771
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID FBQ
AAYXX
CITATION
7QQ
7U5
8FD
JG9
L7M
7S9
L.6
ACYCR
DOI 10.1016/j.cap.2013.01.020
DatabaseName AGRIS
CrossRef
Ceramic Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
Korean Citation Index
DatabaseTitle CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database

AGRICOLA

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1878-1675
EndPage 924
ExternalDocumentID oai_kci_go_kr_ARTI_103316
10_1016_j_cap_2013_01_020
US201500133328
S1567173913000503
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9ZL
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SSZ
T5K
UHS
~G-
AATTM
AAXKI
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AKRWK
ANKPU
BNPGV
FBQ
SSH
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
~HD
7QQ
7U5
8FD
JG9
L7M
7S9
L.6
ABPIF
ABPTK
ACYCR
ID FETCH-LOGICAL-c350t-74b4b07c35f5b7043f84d125258a4ae98f1769b6baa0539bae29ff41a08ee46f3
IEDL.DBID .~1
ISSN 1567-1739
IngestDate Fri Nov 17 19:23:20 EST 2023
Sun Sep 28 02:13:04 EDT 2025
Sun Sep 28 16:05:43 EDT 2025
Wed Oct 01 01:55:03 EDT 2025
Thu Apr 24 23:00:59 EDT 2025
Thu Apr 03 09:42:20 EDT 2025
Fri Feb 23 02:29:58 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Response
Ethanol
Gas sensors
TeO2 nanorods
In2O3 shells
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-74b4b07c35f5b7043f84d125258a4ae98f1769b6baa0539bae29ff41a08ee46f3
Notes http://dx.doi.org/10.1016/j.cap.2013.01.020
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
G704-001115.2013.13.5.005
PQID 1349458874
PQPubID 23500
PageCount 6
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_103316
proquest_miscellaneous_1678556454
proquest_miscellaneous_1349458874
crossref_primary_10_1016_j_cap_2013_01_020
crossref_citationtrail_10_1016_j_cap_2013_01_020
fao_agris_US201500133328
elsevier_sciencedirect_doi_10_1016_j_cap_2013_01_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Current applied physics
PublicationYear 2013
Publisher Elsevier B.V
한국물리학회
Publisher_xml – name: Elsevier B.V
– name: 한국물리학회
References Huang, Lin (bib35) 2012; 174
Chu, Jiang, Guo, Zheng (bib21) 2006; 120
Zhang, Wang, Xu, Wang, Zhu, Zhang, Huang, Wu (bib32) 2009; 9
Arshak, Korostynska (bib15) 2004; 107
Yamazoe (bib2) 1991; 5
Tang, Fan, de la Chapelle, Li (bib8) 2001; 333
Kim, Cho, Kim, Lee, Kang, Kim, Yoon (bib33) 2007; 123
Kilinç, Sennik, Ozuturk (bib23) 2011; 520
Hemmati, Firoozb, Khodadadi, Mortazavi (bib27) 2011; 160
Zhang, Kong, Wang, Du, Bai, Wang, Yu, Ding, Hang, Feng (bib4) 1999; 109
Neri, Bonavita, Micali, Donato, Deorsola, Mossino, Amato, De Benedetti (bib26) 2006; 117
Warner, White, Bonner (bib13) 1972; 43
Liu, Yamazaki, Shen, Kikuta, Nakatani (bib19) 2008; 47
Liu, Yamazaki, Shen, Kikuta, Nakatani, Kawabata (bib20) 2007; 90
Kim, Jin, Park, Kim, Lee (bib6) 2012; 161
Li, Li, Wang, Kuo, Chen (bib30) 2012; 161
Gao, Bando, Sato (bib7) 2002; 81
Kim, Su, Park, Im, Noh, Sung, Kim (bib5) 2002; 89
Ogawa, Nishikawa, Abe (bib37) 1982; 53
Barsan, Weimar (bib38) 2001; 7
Sanchez-Castillo, Couto, Kim, Dumesic (bib9) 2004; 116
Hodgson, Weng (bib18) 2006; 17
Jain, Nowick (bib22) 1981; 67
Jagerszki, Giurskisanyi, Hoefler, Pretsch (bib10) 2007; 7
Oshima, Onga (bib11) 2003; 91
Hodgson, Weng (bib17) 2000; 18
Schierbaum, Weimar, Gopel, Kowalkowski (bib31) 1991; 3
Xu, Tamaki, Miura, Yamazoe (bib36) 1991; 3
Chen, Xue, Wang, Wang (bib24) 2005; 87
Hsueh, Hsu, Chang, Chen (bib28) 2007; 126
Antonov (bib14) 2004; 49
Arshak, Korostynska (bib16) 2002; 2
Pourfayaz, Mortazavi, Khodadadi, Ajami (bib25) 2008; 130
Hu, Du, Zhou, Cui, Lin, Liu, Liu, Wang, Chen (bib29) 2010; 2
Jinkawa, Sakai, Tamaki, Miura, Yamazoe (bib34) 2000; 155
Tippins (bib1) 1965; 140
Gundiah, Govindaraj, Rao (bib3) 2002; 351
Kim, Rothschild, Lee, Kim, Jo, Tuller (bib12) 2006; 6
Jagerszki (10.1016/j.cap.2013.01.020_bib10) 2007; 7
Hodgson (10.1016/j.cap.2013.01.020_bib17) 2000; 18
Warner (10.1016/j.cap.2013.01.020_bib13) 1972; 43
Chen (10.1016/j.cap.2013.01.020_bib24) 2005; 87
Hu (10.1016/j.cap.2013.01.020_bib29) 2010; 2
Li (10.1016/j.cap.2013.01.020_bib30) 2012; 161
Antonov (10.1016/j.cap.2013.01.020_bib14) 2004; 49
Hodgson (10.1016/j.cap.2013.01.020_bib18) 2006; 17
Tippins (10.1016/j.cap.2013.01.020_bib1) 1965; 140
Hsueh (10.1016/j.cap.2013.01.020_bib28) 2007; 126
Liu (10.1016/j.cap.2013.01.020_bib19) 2008; 47
Kim (10.1016/j.cap.2013.01.020_bib33) 2007; 123
Hemmati (10.1016/j.cap.2013.01.020_bib27) 2011; 160
Huang (10.1016/j.cap.2013.01.020_bib35) 2012; 174
Kim (10.1016/j.cap.2013.01.020_bib5) 2002; 89
Arshak (10.1016/j.cap.2013.01.020_bib15) 2004; 107
Kim (10.1016/j.cap.2013.01.020_bib6) 2012; 161
Kim (10.1016/j.cap.2013.01.020_bib12) 2006; 6
Neri (10.1016/j.cap.2013.01.020_bib26) 2006; 117
Barsan (10.1016/j.cap.2013.01.020_bib38) 2001; 7
Schierbaum (10.1016/j.cap.2013.01.020_bib31) 1991; 3
Tang (10.1016/j.cap.2013.01.020_bib8) 2001; 333
Zhang (10.1016/j.cap.2013.01.020_bib32) 2009; 9
Chu (10.1016/j.cap.2013.01.020_bib21) 2006; 120
Jain (10.1016/j.cap.2013.01.020_bib22) 1981; 67
Liu (10.1016/j.cap.2013.01.020_bib20) 2007; 90
Xu (10.1016/j.cap.2013.01.020_bib36) 1991; 3
Kilinç (10.1016/j.cap.2013.01.020_bib23) 2011; 520
Gao (10.1016/j.cap.2013.01.020_bib7) 2002; 81
Sanchez-Castillo (10.1016/j.cap.2013.01.020_bib9) 2004; 116
Oshima (10.1016/j.cap.2013.01.020_bib11) 2003; 91
Jinkawa (10.1016/j.cap.2013.01.020_bib34) 2000; 155
Ogawa (10.1016/j.cap.2013.01.020_bib37) 1982; 53
Zhang (10.1016/j.cap.2013.01.020_bib4) 1999; 109
Yamazoe (10.1016/j.cap.2013.01.020_bib2) 1991; 5
Pourfayaz (10.1016/j.cap.2013.01.020_bib25) 2008; 130
Arshak (10.1016/j.cap.2013.01.020_bib16) 2002; 2
Gundiah (10.1016/j.cap.2013.01.020_bib3) 2002; 351
References_xml – volume: 333
  start-page: 12
  year: 2001
  end-page: 15
  ident: bib8
  publication-title: Chem. Phys. Lett.
– volume: 161
  start-page: 734
  year: 2012
  end-page: 739
  ident: bib30
  publication-title: Sens. Actuators B
– volume: 123
  start-page: 318
  year: 2007
  end-page: 324
  ident: bib33
  publication-title: Sens. Actuators B
– volume: 351
  start-page: 189
  year: 2002
  end-page: 194
  ident: bib3
  publication-title: Chem. Phys. Lett.
– volume: 2
  start-page: 347
  year: 2002
  ident: bib16
  publication-title: Sensors
– volume: 43
  start-page: 4489
  year: 1972
  ident: bib13
  publication-title: J. Appl. Phys.
– volume: 107
  start-page: 224
  year: 2004
  ident: bib15
  publication-title: Mater. Sci. Eng. B
– volume: 520
  start-page: 953
  year: 2011
  end-page: 958
  ident: bib23
  publication-title: Thin Solid Films
– volume: 5
  start-page: 7
  year: 1991
  end-page: 19
  ident: bib2
  publication-title: Sens. Actuators B
– volume: 17
  start-page: 723
  year: 2006
  ident: bib18
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 160
  start-page: 1298
  year: 2011
  end-page: 1303
  ident: bib27
  publication-title: Sens. Actuators B
– volume: 90
  start-page: 173119
  year: 2007
  ident: bib20
  publication-title: Appl. Phys. Lett.
– volume: 89
  start-page: 479
  year: 2002
  end-page: 481
  ident: bib5
  publication-title: Appl. Phys. Lett.
– volume: 67
  start-page: 701
  year: 1981
  ident: bib22
  publication-title: Phys. Stat. Sol. A
– volume: 81
  start-page: 2267
  year: 2002
  end-page: 2269
  ident: bib7
  publication-title: Appl. Phys. Lett.
– volume: 116
  start-page: 1160
  year: 2004
  end-page: 1162
  ident: bib9
  publication-title: Angew. Chem.
– volume: 7
  start-page: 1609
  year: 2007
  end-page: 1612
  ident: bib10
  publication-title: Nano Lett.
– volume: 87
  start-page: 233503
  year: 2005
  end-page: 233505
  ident: bib24
  publication-title: Appl. Phys. Lett.
– volume: 120
  start-page: 177
  year: 2006
  ident: bib21
  publication-title: Sens. Actuators B
– volume: 109
  start-page: 677
  year: 1999
  end-page: 682
  ident: bib4
  publication-title: Solid State Commun.
– volume: 6
  start-page: 2009
  year: 2006
  end-page: 2013
  ident: bib12
  publication-title: Nano Lett.
– volume: 117
  start-page: 196
  year: 2006
  end-page: 204
  ident: bib26
  publication-title: Sens. Actuators B
– volume: 130
  start-page: 625
  year: 2008
  end-page: 629
  ident: bib25
  publication-title: Sens. Actuators B
– volume: 161
  start-page: 594
  year: 2012
  end-page: 599
  ident: bib6
  publication-title: Sens. Actuators B
– volume: 2
  start-page: 3263
  year: 2010
  end-page: 3269
  ident: bib29
  article-title: Enhancement of ethanol vapor sensing of TiO
  publication-title: Appl. Mater. Interface
– volume: 53
  start-page: 4448
  year: 1982
  end-page: 4453
  ident: bib37
  publication-title: J. Appl. Phys.
– volume: 9
  start-page: 3532
  year: 2009
  end-page: 3537
  ident: bib32
  publication-title: Cryst Growth Des.
– volume: 155
  start-page: 193
  year: 2000
  end-page: 200
  ident: bib34
  publication-title: J. Mol. Catal. A: Chem.
– volume: 7
  start-page: 143
  year: 2001
  end-page: 167
  ident: bib38
  publication-title: J. Electroceram.
– volume: 47
  start-page: 771
  year: 2008
  ident: bib19
  publication-title: Jpn. J. Appl. Phys.
– volume: 49
  start-page: 1329
  year: 2004
  ident: bib14
  publication-title: Tech. Phys.
– volume: 18
  start-page: 145
  year: 2000
  ident: bib17
  publication-title: J. Sol-Gel Sci. Technol.
– volume: 174
  start-page: 389
  year: 2012
  end-page: 393
  ident: bib35
  publication-title: Sens. Actuators B
– volume: 3
  start-page: 205
  year: 1991
  end-page: 214
  ident: bib31
  publication-title: Sens. Actuators B
– volume: 91
  start-page: 205503
  year: 2003
  end-page: 205506
  ident: bib11
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 147
  year: 1991
  end-page: 155
  ident: bib36
  publication-title: Sens. Actuators B
– volume: 126
  start-page: 473
  year: 2007
  end-page: 477
  ident: bib28
  publication-title: Sens. Actuators B
– volume: 140
  start-page: 316
  year: 1965
  end-page: 319
  ident: bib1
  publication-title: Phys. Rev. A
– volume: 87
  start-page: 233503
  year: 2005
  ident: 10.1016/j.cap.2013.01.020_bib24
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2140091
– volume: 161
  start-page: 594
  year: 2012
  ident: 10.1016/j.cap.2013.01.020_bib6
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2011.11.006
– volume: 116
  start-page: 1160
  year: 2004
  ident: 10.1016/j.cap.2013.01.020_bib9
  publication-title: Angew. Chem.
  doi: 10.1002/ange.200353238
– volume: 49
  start-page: 1329
  year: 2004
  ident: 10.1016/j.cap.2013.01.020_bib14
  publication-title: Tech. Phys.
  doi: 10.1134/1.1809706
– volume: 5
  start-page: 7
  year: 1991
  ident: 10.1016/j.cap.2013.01.020_bib2
  publication-title: Sens. Actuators B
  doi: 10.1016/0925-4005(91)80213-4
– volume: 53
  start-page: 4448
  year: 1982
  ident: 10.1016/j.cap.2013.01.020_bib37
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.331230
– volume: 67
  start-page: 701
  year: 1981
  ident: 10.1016/j.cap.2013.01.020_bib22
  publication-title: Phys. Stat. Sol. A
  doi: 10.1002/pssa.2210670242
– volume: 2
  start-page: 347
  year: 2002
  ident: 10.1016/j.cap.2013.01.020_bib16
  publication-title: Sensors
  doi: 10.3390/s20800347
– volume: 7
  start-page: 143
  year: 2001
  ident: 10.1016/j.cap.2013.01.020_bib38
  publication-title: J. Electroceram.
  doi: 10.1023/A:1014405811371
– volume: 520
  start-page: 953
  year: 2011
  ident: 10.1016/j.cap.2013.01.020_bib23
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2011.04.183
– volume: 3
  start-page: 205
  year: 1991
  ident: 10.1016/j.cap.2013.01.020_bib31
  publication-title: Sens. Actuators B
  doi: 10.1016/0925-4005(91)80007-7
– volume: 109
  start-page: 677
  year: 1999
  ident: 10.1016/j.cap.2013.01.020_bib4
  publication-title: Solid State Commun.
  doi: 10.1016/S0038-1098(99)00015-0
– volume: 120
  start-page: 177
  year: 2006
  ident: 10.1016/j.cap.2013.01.020_bib21
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2006.02.008
– volume: 130
  start-page: 625
  year: 2008
  ident: 10.1016/j.cap.2013.01.020_bib25
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2007.10.018
– volume: 117
  start-page: 196
  year: 2006
  ident: 10.1016/j.cap.2013.01.020_bib26
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2005.11.032
– volume: 126
  start-page: 473
  year: 2007
  ident: 10.1016/j.cap.2013.01.020_bib28
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2007.03.034
– volume: 17
  start-page: 723
  year: 2006
  ident: 10.1016/j.cap.2013.01.020_bib18
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 9
  start-page: 3532
  year: 2009
  ident: 10.1016/j.cap.2013.01.020_bib32
  publication-title: Cryst Growth Des.
  doi: 10.1021/cg900269a
– volume: 3
  start-page: 147
  year: 1991
  ident: 10.1016/j.cap.2013.01.020_bib36
  publication-title: Sens. Actuators B
  doi: 10.1016/0925-4005(91)80207-Z
– volume: 91
  start-page: 205503
  year: 2003
  ident: 10.1016/j.cap.2013.01.020_bib11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.205503
– volume: 18
  start-page: 145
  year: 2000
  ident: 10.1016/j.cap.2013.01.020_bib17
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1023/A:1008717003930
– volume: 6
  start-page: 2009
  year: 2006
  ident: 10.1016/j.cap.2013.01.020_bib12
  publication-title: Nano Lett.
  doi: 10.1021/nl061197h
– volume: 160
  start-page: 1298
  year: 2011
  ident: 10.1016/j.cap.2013.01.020_bib27
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2011.09.065
– volume: 107
  start-page: 224
  year: 2004
  ident: 10.1016/j.cap.2013.01.020_bib15
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2003.11.014
– volume: 351
  start-page: 189
  year: 2002
  ident: 10.1016/j.cap.2013.01.020_bib3
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(01)01372-0
– volume: 81
  start-page: 2267
  year: 2002
  ident: 10.1016/j.cap.2013.01.020_bib7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1507835
– volume: 333
  start-page: 12
  year: 2001
  ident: 10.1016/j.cap.2013.01.020_bib8
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(00)01326-9
– volume: 43
  start-page: 4489
  year: 1972
  ident: 10.1016/j.cap.2013.01.020_bib13
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1660950
– volume: 155
  start-page: 193
  year: 2000
  ident: 10.1016/j.cap.2013.01.020_bib34
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/S1381-1169(99)00334-9
– volume: 7
  start-page: 1609
  year: 2007
  ident: 10.1016/j.cap.2013.01.020_bib10
  publication-title: Nano Lett.
  doi: 10.1021/nl0705438
– volume: 140
  start-page: 316
  year: 1965
  ident: 10.1016/j.cap.2013.01.020_bib1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRev.140.A316
– volume: 89
  start-page: 479
  year: 2002
  ident: 10.1016/j.cap.2013.01.020_bib5
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1435073
– volume: 161
  start-page: 734
  year: 2012
  ident: 10.1016/j.cap.2013.01.020_bib30
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2011.11.024
– volume: 123
  start-page: 318
  year: 2007
  ident: 10.1016/j.cap.2013.01.020_bib33
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2006.08.028
– volume: 90
  start-page: 173119
  year: 2007
  ident: 10.1016/j.cap.2013.01.020_bib20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2732818
– volume: 174
  start-page: 389
  year: 2012
  ident: 10.1016/j.cap.2013.01.020_bib35
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2012.08.065
– volume: 2
  start-page: 3263
  year: 2010
  ident: 10.1016/j.cap.2013.01.020_bib29
  article-title: Enhancement of ethanol vapor sensing of TiO2 nanobelts by surface engineering
  publication-title: Appl. Mater. Interface
  doi: 10.1021/am100707h
– volume: 47
  start-page: 771
  year: 2008
  ident: 10.1016/j.cap.2013.01.020_bib19
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.47.771
SSID ssj0016404
Score 2.1223114
Snippet TeO2/In2O3 core–shell nanorods were fabricated using thermal evaporation and sputtering methods. The multiple networked TeO2/In2O3 core–shell nanorod sensor...
TeO₂/In₂O₃ core–shell nanorods were fabricated using thermal evaporation and sputtering methods. The multiple networked TeO₂/In₂O₃ core–shell nanorod sensor...
TeO2/In2O3 core-shell nanorods were fabricated using thermal evaporation and sputtering methods. The multiple networked TeO2/In2O3 core-shell nanorod sensor...
TeO2/In2O3 coreeshell nanorods were fabricated using thermal evaporation and sputtering methods. The multiple networked TeO2/In2O3 coreeshell nanorod sensor...
SourceID nrf
proquest
crossref
fao
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 919
SubjectTerms Ethanol
Ethyl alcohol
evaporation
Gas sensors
In2O3 shells
Indium oxides
Nanocomposites
Nanomaterials
nanorods
Nanostructure
physics
Recovery time
Response
Sensors
TeO2 nanorods
물리학
Title Enhanced ethanol sensing properties of TeO2/In2O3 core–shell nanorod sensors
URI https://dx.doi.org/10.1016/j.cap.2013.01.020
https://www.proquest.com/docview/1349458874
https://www.proquest.com/docview/1678556454
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001790794
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Current Applied Physics, 2013, 13(5), , pp.919-924
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: ACRLP
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: .~1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: AIKHN
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: AKRWK
  dateStart: 20010101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELaAqhIXVEorFgpypZ4qhXVs5--4QqDdVl0OsBI3yw72dgE5q2T3ingH3rBP0hlvgoQQe-CSKMk4ssb2eMbz-TMhPxxHulMdR1onmGZMykjHEPO4nGcF7s20gUznzzgdTuSv6-R6g5x2e2EQVtna_pVND9a6fdNvtdmfz2b9S4g8MIVcYEIGWU1wB7tMEdZ38vAM84BoIBwhiMIRSneZzYDxKjVSVsZixdzJ3pqbNp2u4Opr98pih2no_BPZaf1HOlhVcZdsWP-ZfAw4zrLZI-Mz_zfk9KnFNfHqnjaIUPdTOsdV9xrpU2nl6JW94P2R5xeCIo_lv8enBhGh1EMZMKmhVFU3X8jk_OzqdBi1RyZEpUjYIsqkkYZl8OASkzEpXC5vwIfhSa6ltkXu4iwtTGq0htFXGG154ZyMNcutlakTX8mWr7zdJ5Sx0qU5BLDMCGndjRHGWJ4zCy4WT7ntEdYpS5Utnzgea3GvOuDYrQL9KtSvYrEC_fbIz-ci8xWZxjph2bWAetEjFBj7dcX2obWUnoKNVJNLjis68FUInvfId2hCdVfOFJJq431aqbtaQegwgt8JEacg0zWwgoGG2RPtbbVsFPI44rbeTK6Rgak_QX4eefC-2h-SbR7O20A88DeytaiX9gi8noU5Dt36mHwYjH4Px_8BTB_8Rg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtswDCbaFMN2KfaLZu02DdhpgBFZkv-ORdEiWdv00AToTZBcKcta2IGd3vcOe8M9yUjFLlAMy2EXG7ZFQyAlihSpjwBfvCC4UxNHxiQUZkzKyMTo8_hcZAWdzXQBTOdymo7n6ttNcrMDJ_1ZGEqr7HT_RqcHbd29GXXcHK2Wy9E1eh4UQi4oIEOoJruwpxLUyQPYO56cj6ePwYRUhSqC1D4igj64GdK8SkOolbHcgHfyfy1Pu97UeK0a_5fSDivR2UvY70xIdrzp5SvYcdVreBZSOcv2DUxPq-8hrM8cbYvX96ylJPVqwVa08d4QgiqrPZu5KzGaVOJKMoKy_P3zV0tJoaxCGtSqgapu2rcwPzudnYyjrmpCVMqEr6NMWWV5hg8-sRlX0ufqFs0YkeRGGVfkPs7SwqbWGJyAhTVOFN6r2PDcOZV6-Q4GVV25A2Cclz7N0YflVirnb6201omcO7SyRCrcEHjPLF12kOJU2eJe97ljPzTyVxN_NY818ncIXx9JVhs8jW2NVS8B_WRQaNT328gOUFraLFBN6vm1oE0d_CqlyIfwGUWo78qlJlxtui9qfddo9B4m-Dsp4xTb9ALWONcogGIqVz-0mqAc6WRvpra0wdU_IYge9f7_ev8Jno9nlxf6YjI9P4QXIpTfoPTgIxismwf3AY2gtf3YDfI_5dv-8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+ethanol+sensing+properties+of+TeO%E2%82%82%2FIn%E2%82%82O%E2%82%83+core%E2%80%93shell+nanorod+sensors&rft.jtitle=Current+applied+physics&rft.au=Ko%2C+Hyunsung&rft.au=Park%2C+Sunghoon&rft.au=An%2C+Soyeon&rft.au=Lee%2C+Chongmu&rft.date=2013-07-01&rft.issn=1567-1739&rft.volume=13&rft.issue=5+p.919-924&rft.spage=919&rft.epage=924&rft_id=info:doi/10.1016%2Fj.cap.2013.01.020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon