Event/Self-Triggered Consensus Control of Multiagent Systems With Undesirable Sensor Signals
This article focuses on event-triggered consensus control for multiagent systems subject to sensor faults or noises. First, a descriptor state observer with a low-pass filtering characteristic being developed for each agent using output information. The convergence regions of estimation errors can b...
        Saved in:
      
    
          | Published in | IEEE transactions on cybernetics Vol. 52; no. 6; pp. 4346 - 4355 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.06.2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2168-2267 2168-2275 2168-2275  | 
| DOI | 10.1109/TCYB.2020.3026215 | 
Cover
| Summary: | This article focuses on event-triggered consensus control for multiagent systems subject to sensor faults or noises. First, a descriptor state observer with a low-pass filtering characteristic being developed for each agent using output information. The convergence regions of estimation errors can be reduced by a nonsingular suppression matrix. Leader-follower event-triggered consensus protocols with continuous-time communication are designed for multiagent systems based on the estimated states. By virtue of the Jordan form of the Laplacian matrix, the stability conditions are derived by using the Lyapunov analysis. Then, new self-triggered consensus protocols are designed for the multiagent systems to remove the requirement of the continuous monitoring triggering condition and continuous communication simultaneously. The triggering interval is proved greater than 0, and the Zeno behavior is excluded for all agents. Finally, numerical simulations are conducted to demonstrate the effectiveness of the proposed design. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
| ISSN: | 2168-2267 2168-2275 2168-2275  | 
| DOI: | 10.1109/TCYB.2020.3026215 |