Solving Expensive Multimodal Optimization Problem by a Decomposition Differential Evolution Algorithm

An expensive multimodal optimization problem (EMMOP) is that the computation of the objective function is time consuming and it has multiple global optima. This article proposes a decomposition differential evolution (DE) based on the radial basis function (RBF) for EMMOPs, called D/REM. It mainly c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 4; pp. 2236 - 2246
Main Authors Gao, Weifeng, Wei, Zhifang, Gong, Maoguo, Yen, Gary G.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2021.3113575

Cover

More Information
Summary:An expensive multimodal optimization problem (EMMOP) is that the computation of the objective function is time consuming and it has multiple global optima. This article proposes a decomposition differential evolution (DE) based on the radial basis function (RBF) for EMMOPs, called D/REM. It mainly consists of two phases: the promising subregions detection (PSD) and the local search phase (LSP). In PSD, a population update strategy is designed and the mean-shift clustering is employed to predict the promising subregions of EMMOP. In LSP, a local RBF surrogate model is constructed for each promising subregion and each local RBF surrogate model tracks a global optimum of EMMOP. In this way, an EMMOP is decomposed into many expensive global optimization subproblems. To handle these subproblems, a popular DE variant, JADE, acts as the search engine to deal with these subproblems. A large number of numerical experiments unambiguously validate that D/REM can solve EMMOPs effectively and efficiently.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2021.3113575