Adherence Forecasting for Guided Internet-Delivered Cognitive Behavioral Therapy: A Minimally Data-Sensitive Approach

Internet-delivered psychological treatments (IDPT) are seen as an effective and scalable pathway to improving the accessibility of mental healthcare. Within this context, treatment adherence is an especially pertinent challenge to address due to the reduced interaction between healthcare professiona...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 27; no. 6; pp. 2771 - 2781
Main Authors Cote-Allard, Ulysse, Pham, Minh H., Schultz, Alexandra K., Nordgreen, Tine, Torresen, Jim
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2022.3204737

Cover

More Information
Summary:Internet-delivered psychological treatments (IDPT) are seen as an effective and scalable pathway to improving the accessibility of mental healthcare. Within this context, treatment adherence is an especially pertinent challenge to address due to the reduced interaction between healthcare professionals and patients. In parallel, the increase in regulations surrounding the use of personal data, such as the General Data Protection Regulation (GDPR), makes data minimization a core consideration for real-world implementation of IDPTs. Consequently, this work proposes a Self-Attention-based deep learning approach to perform automatic adherence forecasting, while only relying on minimally sensitive login/logout-timestamp data. This approach was tested on a dataset containing 342 patients undergoing Guided Internet-delivered Cognitive Behavioral Therapy (G-ICBT) treatment. Of these 342 patients, 101 (<inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>30%) were considered non-adherent (dropout) based on the adherence definition used in this work (i.e. at least eight connections to the platform lasting more than a minute over 56 days). The proposed model achieved over 70% average balanced accuracy, after only 20 out of the 56 days (<inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>1/3) of the treatment had elapsed. This study demonstrates that automatic adherence forecasting for G-ICBT, is achievable using only minimally sensitive data, thus facilitating the implementation of such tools within real-world IDPT platforms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2022.3204737