A Wearable Gait Analysis and Recognition Method for Parkinson's Disease Based on Error State Kalman Filter
For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson's disease (PD) to evaluates the motor ability. The error state Kalman filter (ESKF) is used for attitude estimation, and the gait parameters are modified by phase segmentation and zero ve...
Saved in:
| Published in | IEEE journal of biomedical and health informatics Vol. 26; no. 8; pp. 4165 - 4175 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2194 2168-2208 2168-2208 |
| DOI | 10.1109/JBHI.2022.3174249 |
Cover
| Abstract | For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson's disease (PD) to evaluates the motor ability. The error state Kalman filter (ESKF) is used for attitude estimation, and the gait parameters are modified by phase segmentation and zero velocity update (ZUPT) algorithm. In addition, this study uses gait parameters as classifier features to recognize abnormal gait, and compares the recognition effect with statistical features. The effect of our gait system is verified by comparison with the OptiTrack system, and the mean absolute error (MAE) of step length and foot clearance are 2.52<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>3.61 cm and 0.96<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>1.24 cm respectively. Forty Parkinson's patients and forty age-matched healthy people are recruited for gait comparison, the analysis results showed significant differences between the two groups. The abnormal gait recognition results show that gait features have stronger generalization ability than statistical features in leave-one-subject-out (LOSO) validation. The method proposed in this study can be applied to the gait analysis and objective evaluation of PD. |
|---|---|
| AbstractList | For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson’s disease (PD) to evaluates the motor ability. The error state Kalman filter (ESKF) is used for attitude estimation, and the gait parameters are modified by phase segmentation and zero velocity update (ZUPT) algorithm. In addition, this study uses gait parameters as classifier features to recognize abnormal gait, and compares the recognition effect with statistical features. The effect of our gait system is verified by comparison with the OptiTrack system, and the mean absolute error (MAE) of step length and foot clearance are 2.52[Formula Omitted]3.61 cm and 0.96[Formula Omitted]1.24 cm respectively. Forty Parkinson’s patients and forty age-matched healthy people are recruited for gait comparison, the analysis results showed significant differences between the two groups. The abnormal gait recognition results show that gait features have stronger generalization ability than statistical features in leave-one-subject-out (LOSO) validation. The method proposed in this study can be applied to the gait analysis and objective evaluation of PD. For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson's disease (PD) to evaluates the motor ability. The error state Kalman filter (ESKF) is used for attitude estimation, and the gait parameters are modified by phase segmentation and zero velocity update (ZUPT) algorithm. In addition, this study uses gait parameters as classifier features to recognize abnormal gait, and compares the recognition effect with statistical features. The effect of our gait system is verified by comparison with the OptiTrack system, and the mean absolute error (MAE) of step length and foot clearance are 2.52<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>3.61 cm and 0.96<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>1.24 cm respectively. Forty Parkinson's patients and forty age-matched healthy people are recruited for gait comparison, the analysis results showed significant differences between the two groups. The abnormal gait recognition results show that gait features have stronger generalization ability than statistical features in leave-one-subject-out (LOSO) validation. The method proposed in this study can be applied to the gait analysis and objective evaluation of PD. For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson's disease (PD) to evaluates the motor ability. The error state Kalman filter (ESKF) is used for attitude update, and the gait parameters are modified by phase segmentation and zero velocity update (ZUPT) algorithm. In addition, this study uses gait parameters as classifier features to recognize abnormal gait, and compares the recognition effect with statistical features. The effect of our gait system is verified by comparison with the OptiTrack system, and the mean absolute error (MAE) of step length and foot clearance are 2.523.61cm and 0.961.24cm respectively. Forty Parkinson's patients and forty age-matched healthy people are recruited for gait comparison, the analysis results showed significant differences between the two groups. The abnormal gait recognition results show that gait features have stronger generalization ability than statistical features in leave-one-subject-out (LOSO) validation. The method proposed in this study can be applied to the gait analysis and objective evaluation of PD. For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson's disease (PD) to evaluates the motor ability. The error state Kalman filter (ESKF) is used for attitude estimation, and the gait parameters are modified by phase segmentation and zero velocity update (ZUPT) algorithm. In addition, this study uses gait parameters as classifier features to recognize abnormal gait, and compares the recognition effect with statistical features. The effect of our gait system is verified by comparison with the OptiTrack system, and the mean absolute error (MAE) of step length and foot clearance are 2.52 ±3.61 cm and 0.96 ±1.24 cm respectively. Forty Parkinson's patients and forty age-matched healthy people are recruited for gait comparison, the analysis results showed significant differences between the two groups. The abnormal gait recognition results show that gait features have stronger generalization ability than statistical features in leave-one-subject-out (LOSO) validation. The method proposed in this study can be applied to the gait analysis and objective evaluation of PD.For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson's disease (PD) to evaluates the motor ability. The error state Kalman filter (ESKF) is used for attitude estimation, and the gait parameters are modified by phase segmentation and zero velocity update (ZUPT) algorithm. In addition, this study uses gait parameters as classifier features to recognize abnormal gait, and compares the recognition effect with statistical features. The effect of our gait system is verified by comparison with the OptiTrack system, and the mean absolute error (MAE) of step length and foot clearance are 2.52 ±3.61 cm and 0.96 ±1.24 cm respectively. Forty Parkinson's patients and forty age-matched healthy people are recruited for gait comparison, the analysis results showed significant differences between the two groups. The abnormal gait recognition results show that gait features have stronger generalization ability than statistical features in leave-one-subject-out (LOSO) validation. The method proposed in this study can be applied to the gait analysis and objective evaluation of PD. |
| Author | Liu, Ruichen Wang, Zhelong Shi, Xin Zhao, Hongyu Lin, Fang Qiu, Sen Wang, Cui |
| Author_xml | – sequence: 1 givenname: Ruichen orcidid: 0000-0002-1631-9652 surname: Liu fullname: Liu, Ruichen email: lrichard1990@163.com organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian, China – sequence: 2 givenname: Zhelong orcidid: 0000-0003-4959-3372 surname: Wang fullname: Wang, Zhelong email: wangzl@dlut.edu.cn organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian, China – sequence: 3 givenname: Sen orcidid: 0000-0001-6846-546X surname: Qiu fullname: Qiu, Sen email: qiu@dlut.edu.cn organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian, China – sequence: 4 givenname: Hongyu orcidid: 0000-0003-1510-5289 surname: Zhao fullname: Zhao, Hongyu email: zhy.lucy@hotmail.com organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian, China – sequence: 5 givenname: Cui surname: Wang fullname: Wang, Cui email: wangc817@163.com organization: Dalian Municipal Central Hospital, Dalian, China – sequence: 6 givenname: Xin orcidid: 0000-0001-9795-2160 surname: Shi fullname: Shi, Xin email: sx@mail.dlut.edu.cn organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian, China – sequence: 7 givenname: Fang surname: Lin fullname: Lin, Fang email: lf621@mail.dlut.edu.cn organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35544509$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtvEzEUhS1UREvoD0BIyBIL2CT4OTNepqUvKALxEEvreuYOOEzsYjuL_nscJWHRBV5cW1ffOZLPeUqOQgxIyHPOFpwz8_b92fXNQjAhFpK3SijziJwI3nRzIVh3dHhzo47Jac4rVk9XV6Z5Qo6l1kppZk7Iakl_ICRwE9Ir8IUuA0z32WcKYaBfsI8_gy8-BvoRy6840DEm-hnSbx9yDK8zfeczQkZ6VsdAK3eRUkW-FihIP8C0hkAv_VQwPSOPR5gynu7vGfl-efHt_Hp---nq5nx5O--lMmVu2tE5xo1WALo3buSyN9KoXikntGqc5q4XTmpluDTQNtJpNohuRAaucU7OyJud712KfzaYi1373OM0QcC4yVY0TfURrMpn5NUDdBU3qSZQqZZJJbTpZKVe7qmNW-Ng75JfQ7q3hxQr0O6APsWcE4629_X_NbWSwE-WM7utzG4rs9vK7L6yquQPlAfz_2le7DQeEf_xpm2FkUL-BYYVnrM |
| CODEN | IJBHA9 |
| CitedBy_id | crossref_primary_10_1016_j_inffus_2025_103115 crossref_primary_10_1049_sil2_12201 crossref_primary_10_3390_medicines10080045 crossref_primary_10_3390_mi16030303 crossref_primary_10_1109_ACCESS_2024_3420098 crossref_primary_10_3390_bioengineering10070785 crossref_primary_10_1007_s10291_024_01805_5 crossref_primary_10_1109_JBHI_2024_3380099 crossref_primary_10_1109_TIM_2024_3480204 crossref_primary_10_1109_TSMC_2024_3369071 crossref_primary_10_1016_j_aej_2023_06_039 crossref_primary_10_1109_JSEN_2022_3208734 crossref_primary_10_1109_TETCI_2023_3290002 crossref_primary_10_1016_j_compbiomed_2023_107270 crossref_primary_10_1109_TIM_2024_3449951 |
| Cites_doi | 10.1109/TNSRE.2015.2457511 10.1016/j.jbiomech.2017.07.012 10.1109/TIM.2021.3062162 10.1109/ISISS.2019.8739728 10.1109/TMECH.2015.2430357 10.1109/JIOT.2021.3102856 10.1016/j.icte.2016.10.005 10.1109/TCPMT.2018.2810103 10.1016/j.inffus.2021.11.006 10.1007/s00415-008-5004-3 10.1016/j.gaitpost.2021.01.013 10.1109/IROS.2008.4650766 10.1109/JSEN.2017.2787578 10.1109/TAES.2019.2946506 10.1109/JBHI.2015.2450232 10.1109/ACCESS.2019.2946609 10.1109/VTC2020-Fall49728.2020.9348709 10.1109/TAFFC.2016.2549533 10.1109/TIE.2019.2897550 10.1109/JIOT.2015.2390075 10.3390/app8071167 10.4324/9780203771587 10.1109/TNSRE.2015.2498287 10.1109/ACCESS.2018.2816816 10.3389/fnhum.2016.00319 10.1016/j.smhl.2020.100162 10.1109/TIM.2012.2218692 10.1109/IEMBS.2011.6090226 10.1016/j.humov.2021.102891 10.1109/JSEN.2020.3016642 10.1109/THMS.2020.2984181 10.1109/JSEN.2020.3011627 10.1109/ACCESS.2020.3016062 10.1093/ageing/26.1.15 10.1002/mds.26424 10.1109/JBHI.2016.2636456 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/JBHI.2022.3174249 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Statistics |
| EISSN | 2168-2208 |
| EndPage | 4175 |
| ExternalDocumentID | 35544509 10_1109_JBHI_2022_3174249 9772932 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61873044; 61903062; 61803072 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: DUT21YG125 funderid: 10.13039/501100012226 – fundername: Science and Technology Program of Liaoning Province grantid: 2021JH2/10300049 |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 6IL ADZIZ CHZPO NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c349t-97fbb01954aa5c9bf13c9394c44b2546b51bc2b3549139a763b50d28fe0ab6bb3 |
| IEDL.DBID | RIE |
| ISSN | 2168-2194 2168-2208 |
| IngestDate | Sun Sep 28 11:05:59 EDT 2025 Sun Jun 29 12:43:49 EDT 2025 Thu Jan 02 22:54:00 EST 2025 Thu Apr 24 22:57:23 EDT 2025 Wed Oct 01 03:40:03 EDT 2025 Wed Aug 27 02:22:58 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-97fbb01954aa5c9bf13c9394c44b2546b51bc2b3549139a763b50d28fe0ab6bb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1510-5289 0000-0003-4959-3372 0000-0002-1631-9652 0000-0001-9795-2160 0000-0001-6846-546X |
| PMID | 35544509 |
| PQID | 2703425983 |
| PQPubID | 85417 |
| PageCount | 11 |
| ParticipantIDs | pubmed_primary_35544509 crossref_citationtrail_10_1109_JBHI_2022_3174249 proquest_miscellaneous_2662542091 crossref_primary_10_1109_JBHI_2022_3174249 proquest_journals_2703425983 ieee_primary_9772932 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationTitleAlternate | IEEE J Biomed Health Inform |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref14 doi: 10.1109/TNSRE.2015.2457511 – ident: ref16 doi: 10.1016/j.jbiomech.2017.07.012 – ident: ref6 doi: 10.1109/TIM.2021.3062162 – ident: ref12 doi: 10.1109/ISISS.2019.8739728 – ident: ref24 doi: 10.1109/TMECH.2015.2430357 – ident: ref7 doi: 10.1109/JIOT.2021.3102856 – ident: ref17 doi: 10.1016/j.icte.2016.10.005 – ident: ref9 doi: 10.1109/TCPMT.2018.2810103 – ident: ref35 doi: 10.1016/j.inffus.2021.11.006 – ident: ref1 doi: 10.1007/s00415-008-5004-3 – ident: ref15 doi: 10.1016/j.gaitpost.2021.01.013 – ident: ref11 doi: 10.1109/IROS.2008.4650766 – ident: ref21 doi: 10.1109/JSEN.2017.2787578 – ident: ref26 doi: 10.1109/TAES.2019.2946506 – ident: ref20 doi: 10.1109/JBHI.2015.2450232 – ident: ref22 doi: 10.1109/ACCESS.2019.2946609 – ident: ref23 doi: 10.1109/VTC2020-Fall49728.2020.9348709 – ident: ref2 doi: 10.1109/TAFFC.2016.2549533 – ident: ref33 doi: 10.1109/TIE.2019.2897550 – ident: ref4 doi: 10.1109/JIOT.2015.2390075 – ident: ref27 doi: 10.3390/app8071167 – ident: ref30 doi: 10.4324/9780203771587 – ident: ref5 doi: 10.1109/TNSRE.2015.2498287 – ident: ref25 doi: 10.1109/ACCESS.2018.2816816 – ident: ref31 doi: 10.3389/fnhum.2016.00319 – ident: ref36 doi: 10.1016/j.smhl.2020.100162 – ident: ref10 doi: 10.1109/TIM.2012.2218692 – ident: ref18 doi: 10.1109/IEMBS.2011.6090226 – ident: ref19 doi: 10.1016/j.humov.2021.102891 – ident: ref28 doi: 10.1109/JSEN.2020.3016642 – ident: ref32 doi: 10.1109/THMS.2020.2984181 – ident: ref13 doi: 10.1109/JSEN.2020.3011627 – ident: ref3 doi: 10.1109/ACCESS.2020.3016062 – ident: ref34 doi: 10.1093/ageing/26.1.15 – ident: ref29 doi: 10.1002/mds.26424 – ident: ref8 doi: 10.1109/JBHI.2016.2636456 |
| SSID | ssj0000816896 |
| Score | 2.4623446 |
| Snippet | For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson's disease (PD) to evaluates the motor ability. The... For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson's disease (PD) to evaluates the motor ability. The... For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson’s disease (PD) to evaluates the motor ability. The... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4165 |
| SubjectTerms | abnormal gait recognition Accelerometers Algorithms Attitude estimation Bioinformatics Biomedical measurement Covariance matrices Estimation Evaluation feature engineering Feature recognition Gait Gait recognition Gyroscopes information fusion Kalman filters Kinematics Movement disorders Neurodegenerative diseases Parameter modification Parkinson's disease phase segmentation Segmentation Statistics Wearable technology |
| Title | A Wearable Gait Analysis and Recognition Method for Parkinson's Disease Based on Error State Kalman Filter |
| URI | https://ieeexplore.ieee.org/document/9772932 https://www.ncbi.nlm.nih.gov/pubmed/35544509 https://www.proquest.com/docview/2703425983 https://www.proquest.com/docview/2662542091 |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SHEIvTZr04bxQoVAo9cYry_bqmDTZblO2h9LQ3IxGliBN4g0b7yW_PjPyg1La0osReCTLzEj6RvMCeJt5Z7xyGBPa8KSgWB9rI01sM6TDqbCTygVvi6_57EKdX2aXa_BhiIVxzgXnMzfiZrDlVwu74quyI81QMKUN90kxydtYreE-JRSQCOW4JDViWoiqM2KOE310fjL7TMqglKSjkjKoOFkon7QqY0_EX06kUGLl72gznDrTTZj3822dTa5HqwZH9uG3VI7_-0Nb8KyDn-K4lZfnsObqbdiYdwb2Hfh5LH6Q7HM8lfhkrhrRJy0Rpq7Et97baFGLeSg9LQjzCo6cDkFk7-7FaWvwESf0qATRnS2XRBIwrfhibm5NLaZXbKJ_ARfTs-8fZ3FXjiG2qdJNrAuPyPGFypjMavTj1OpUK6sUclZ9zMZoJaakcRKsNLRxYZZUcuJdYjBHTF_Cer2o3WsQFh1W3tM41F-iN6xXFlWCMnepLKoIkp4lpe1ylXPJjJsy6CyJLpmhJTO07Bgawfuhy12bqONfxDvMjIGw40ME-z3fy24p35ey4CyJmZ6kEbwZXtMiZMuKqd1iRTQ5qZFKEvaK4FUrL8PYvZjt_vmbe_CUZ9b6FO7DerNcuQPCOQ0eBgF_BAgY9b8 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRQIuvMojUMBISEiIbLOOvVkfW-iyfWwPqBW9RR7HlkrbLNpmL_x6ZpyHEALEJbKUseNoxvY3nhfAWx28DcpjSmgjkILiQmqstKnTSIdT4aaVj94WJ5P5mTo81-cb8GGIhfHeR-czP-JmtOVXS7fmq7Idw1Awpw33llZK6TZaa7hRiSUkYkEuSY2UlqLqzJjjzOwc7s0PSB2UkrRUUgcVpwvls1Zp9kX85UyKRVb-jjfjuTO7D4t-xq27yeVo3eDI_fgtmeP__tIDuNcBULHbSsxD2PD1I7i96EzsW_BtV3wl6eeIKvHZXjSiT1sibF2JL72_0bIWi1h8WhDqFRw7HcPI3t2IT63JR-zRoxJEt79aEUlEteLIXl3bWswu2Ej_GM5m-6cf52lXkCF1uTJNaoqAyBGGylrtDIZx7kxulFMKOa8-6jE6iTnpnAQsLW1dqLNKToPPLE4Q8yewWS9r_wyEQ49VCDQO9ZcYLGuWRZWhnPhcFlUCWc-S0nXZyrloxlUZtZbMlMzQkhladgxN4P3Q5XubquNfxFvMjIGw40MC2z3fy24x35Sy4DyJ2kzzBN4Mr2kZsm3F1n65JpoJKZJKEvpK4GkrL8PYvZg9__M3X8Od-eniuDw-ODl6AXd5lq2H4TZsNqu1f0mop8FXUdh_Ag3l-Qw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Wearable+Gait+Analysis+and+Recognition+Method+for+Parkinson%27s+Disease+Based+on+Error+State+Kalman+Filter&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Liu%2C+Ruichen&rft.au=Wang%2C+Zhelong&rft.au=Qiu%2C+Sen&rft.au=Zhao%2C+Hongyu&rft.date=2022-08-01&rft.issn=2168-2208&rft.eissn=2168-2208&rft.volume=26&rft.issue=8&rft.spage=4165&rft_id=info:doi/10.1109%2FJBHI.2022.3174249&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |