A Wearable Gait Analysis and Recognition Method for Parkinson's Disease Based on Error State Kalman Filter

For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson's disease (PD) to evaluates the motor ability. The error state Kalman filter (ESKF) is used for attitude estimation, and the gait parameters are modified by phase segmentation and zero ve...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 26; no. 8; pp. 4165 - 4175
Main Authors Liu, Ruichen, Wang, Zhelong, Qiu, Sen, Zhao, Hongyu, Wang, Cui, Shi, Xin, Lin, Fang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2022.3174249

Cover

Abstract For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson's disease (PD) to evaluates the motor ability. The error state Kalman filter (ESKF) is used for attitude estimation, and the gait parameters are modified by phase segmentation and zero velocity update (ZUPT) algorithm. In addition, this study uses gait parameters as classifier features to recognize abnormal gait, and compares the recognition effect with statistical features. The effect of our gait system is verified by comparison with the OptiTrack system, and the mean absolute error (MAE) of step length and foot clearance are 2.52<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>3.61 cm and 0.96<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>1.24 cm respectively. Forty Parkinson's patients and forty age-matched healthy people are recruited for gait comparison, the analysis results showed significant differences between the two groups. The abnormal gait recognition results show that gait features have stronger generalization ability than statistical features in leave-one-subject-out (LOSO) validation. The method proposed in this study can be applied to the gait analysis and objective evaluation of PD.
AbstractList For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson’s disease (PD) to evaluates the motor ability. The error state Kalman filter (ESKF) is used for attitude estimation, and the gait parameters are modified by phase segmentation and zero velocity update (ZUPT) algorithm. In addition, this study uses gait parameters as classifier features to recognize abnormal gait, and compares the recognition effect with statistical features. The effect of our gait system is verified by comparison with the OptiTrack system, and the mean absolute error (MAE) of step length and foot clearance are 2.52[Formula Omitted]3.61 cm and 0.96[Formula Omitted]1.24 cm respectively. Forty Parkinson’s patients and forty age-matched healthy people are recruited for gait comparison, the analysis results showed significant differences between the two groups. The abnormal gait recognition results show that gait features have stronger generalization ability than statistical features in leave-one-subject-out (LOSO) validation. The method proposed in this study can be applied to the gait analysis and objective evaluation of PD.
For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson's disease (PD) to evaluates the motor ability. The error state Kalman filter (ESKF) is used for attitude estimation, and the gait parameters are modified by phase segmentation and zero velocity update (ZUPT) algorithm. In addition, this study uses gait parameters as classifier features to recognize abnormal gait, and compares the recognition effect with statistical features. The effect of our gait system is verified by comparison with the OptiTrack system, and the mean absolute error (MAE) of step length and foot clearance are 2.52<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>3.61 cm and 0.96<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>1.24 cm respectively. Forty Parkinson's patients and forty age-matched healthy people are recruited for gait comparison, the analysis results showed significant differences between the two groups. The abnormal gait recognition results show that gait features have stronger generalization ability than statistical features in leave-one-subject-out (LOSO) validation. The method proposed in this study can be applied to the gait analysis and objective evaluation of PD.
For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson's disease (PD) to evaluates the motor ability. The error state Kalman filter (ESKF) is used for attitude update, and the gait parameters are modified by phase segmentation and zero velocity update (ZUPT) algorithm. In addition, this study uses gait parameters as classifier features to recognize abnormal gait, and compares the recognition effect with statistical features. The effect of our gait system is verified by comparison with the OptiTrack system, and the mean absolute error (MAE) of step length and foot clearance are 2.523.61cm and 0.961.24cm respectively. Forty Parkinson's patients and forty age-matched healthy people are recruited for gait comparison, the analysis results showed significant differences between the two groups. The abnormal gait recognition results show that gait features have stronger generalization ability than statistical features in leave-one-subject-out (LOSO) validation. The method proposed in this study can be applied to the gait analysis and objective evaluation of PD.
For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson's disease (PD) to evaluates the motor ability. The error state Kalman filter (ESKF) is used for attitude estimation, and the gait parameters are modified by phase segmentation and zero velocity update (ZUPT) algorithm. In addition, this study uses gait parameters as classifier features to recognize abnormal gait, and compares the recognition effect with statistical features. The effect of our gait system is verified by comparison with the OptiTrack system, and the mean absolute error (MAE) of step length and foot clearance are 2.52 ±3.61 cm and 0.96 ±1.24 cm respectively. Forty Parkinson's patients and forty age-matched healthy people are recruited for gait comparison, the analysis results showed significant differences between the two groups. The abnormal gait recognition results show that gait features have stronger generalization ability than statistical features in leave-one-subject-out (LOSO) validation. The method proposed in this study can be applied to the gait analysis and objective evaluation of PD.For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson's disease (PD) to evaluates the motor ability. The error state Kalman filter (ESKF) is used for attitude estimation, and the gait parameters are modified by phase segmentation and zero velocity update (ZUPT) algorithm. In addition, this study uses gait parameters as classifier features to recognize abnormal gait, and compares the recognition effect with statistical features. The effect of our gait system is verified by comparison with the OptiTrack system, and the mean absolute error (MAE) of step length and foot clearance are 2.52 ±3.61 cm and 0.96 ±1.24 cm respectively. Forty Parkinson's patients and forty age-matched healthy people are recruited for gait comparison, the analysis results showed significant differences between the two groups. The abnormal gait recognition results show that gait features have stronger generalization ability than statistical features in leave-one-subject-out (LOSO) validation. The method proposed in this study can be applied to the gait analysis and objective evaluation of PD.
Author Liu, Ruichen
Wang, Zhelong
Shi, Xin
Zhao, Hongyu
Lin, Fang
Qiu, Sen
Wang, Cui
Author_xml – sequence: 1
  givenname: Ruichen
  orcidid: 0000-0002-1631-9652
  surname: Liu
  fullname: Liu, Ruichen
  email: lrichard1990@163.com
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian, China
– sequence: 2
  givenname: Zhelong
  orcidid: 0000-0003-4959-3372
  surname: Wang
  fullname: Wang, Zhelong
  email: wangzl@dlut.edu.cn
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian, China
– sequence: 3
  givenname: Sen
  orcidid: 0000-0001-6846-546X
  surname: Qiu
  fullname: Qiu, Sen
  email: qiu@dlut.edu.cn
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian, China
– sequence: 4
  givenname: Hongyu
  orcidid: 0000-0003-1510-5289
  surname: Zhao
  fullname: Zhao, Hongyu
  email: zhy.lucy@hotmail.com
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian, China
– sequence: 5
  givenname: Cui
  surname: Wang
  fullname: Wang, Cui
  email: wangc817@163.com
  organization: Dalian Municipal Central Hospital, Dalian, China
– sequence: 6
  givenname: Xin
  orcidid: 0000-0001-9795-2160
  surname: Shi
  fullname: Shi, Xin
  email: sx@mail.dlut.edu.cn
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian, China
– sequence: 7
  givenname: Fang
  surname: Lin
  fullname: Lin, Fang
  email: lf621@mail.dlut.edu.cn
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35544509$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS1UREvoD0BIyBIL2CT4OTNepqUvKALxEEvreuYOOEzsYjuL_nscJWHRBV5cW1ffOZLPeUqOQgxIyHPOFpwz8_b92fXNQjAhFpK3SijziJwI3nRzIVh3dHhzo47Jac4rVk9XV6Z5Qo6l1kppZk7Iakl_ICRwE9Ir8IUuA0z32WcKYaBfsI8_gy8-BvoRy6840DEm-hnSbx9yDK8zfeczQkZ6VsdAK3eRUkW-FihIP8C0hkAv_VQwPSOPR5gynu7vGfl-efHt_Hp---nq5nx5O--lMmVu2tE5xo1WALo3buSyN9KoXikntGqc5q4XTmpluDTQNtJpNohuRAaucU7OyJud712KfzaYi1373OM0QcC4yVY0TfURrMpn5NUDdBU3qSZQqZZJJbTpZKVe7qmNW-Ng75JfQ7q3hxQr0O6APsWcE4629_X_NbWSwE-WM7utzG4rs9vK7L6yquQPlAfz_2le7DQeEf_xpm2FkUL-BYYVnrM
CODEN IJBHA9
CitedBy_id crossref_primary_10_1016_j_inffus_2025_103115
crossref_primary_10_1049_sil2_12201
crossref_primary_10_3390_medicines10080045
crossref_primary_10_3390_mi16030303
crossref_primary_10_1109_ACCESS_2024_3420098
crossref_primary_10_3390_bioengineering10070785
crossref_primary_10_1007_s10291_024_01805_5
crossref_primary_10_1109_JBHI_2024_3380099
crossref_primary_10_1109_TIM_2024_3480204
crossref_primary_10_1109_TSMC_2024_3369071
crossref_primary_10_1016_j_aej_2023_06_039
crossref_primary_10_1109_JSEN_2022_3208734
crossref_primary_10_1109_TETCI_2023_3290002
crossref_primary_10_1016_j_compbiomed_2023_107270
crossref_primary_10_1109_TIM_2024_3449951
Cites_doi 10.1109/TNSRE.2015.2457511
10.1016/j.jbiomech.2017.07.012
10.1109/TIM.2021.3062162
10.1109/ISISS.2019.8739728
10.1109/TMECH.2015.2430357
10.1109/JIOT.2021.3102856
10.1016/j.icte.2016.10.005
10.1109/TCPMT.2018.2810103
10.1016/j.inffus.2021.11.006
10.1007/s00415-008-5004-3
10.1016/j.gaitpost.2021.01.013
10.1109/IROS.2008.4650766
10.1109/JSEN.2017.2787578
10.1109/TAES.2019.2946506
10.1109/JBHI.2015.2450232
10.1109/ACCESS.2019.2946609
10.1109/VTC2020-Fall49728.2020.9348709
10.1109/TAFFC.2016.2549533
10.1109/TIE.2019.2897550
10.1109/JIOT.2015.2390075
10.3390/app8071167
10.4324/9780203771587
10.1109/TNSRE.2015.2498287
10.1109/ACCESS.2018.2816816
10.3389/fnhum.2016.00319
10.1016/j.smhl.2020.100162
10.1109/TIM.2012.2218692
10.1109/IEMBS.2011.6090226
10.1016/j.humov.2021.102891
10.1109/JSEN.2020.3016642
10.1109/THMS.2020.2984181
10.1109/JSEN.2020.3011627
10.1109/ACCESS.2020.3016062
10.1093/ageing/26.1.15
10.1002/mds.26424
10.1109/JBHI.2016.2636456
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2022.3174249
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
EISSN 2168-2208
EndPage 4175
ExternalDocumentID 35544509
10_1109_JBHI_2022_3174249
9772932
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61873044; 61903062; 61803072
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: DUT21YG125
  funderid: 10.13039/501100012226
– fundername: Science and Technology Program of Liaoning Province
  grantid: 2021JH2/10300049
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
6IL
ADZIZ
CHZPO
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c349t-97fbb01954aa5c9bf13c9394c44b2546b51bc2b3549139a763b50d28fe0ab6bb3
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Sun Sep 28 11:05:59 EDT 2025
Sun Jun 29 12:43:49 EDT 2025
Thu Jan 02 22:54:00 EST 2025
Thu Apr 24 22:57:23 EDT 2025
Wed Oct 01 03:40:03 EDT 2025
Wed Aug 27 02:22:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-97fbb01954aa5c9bf13c9394c44b2546b51bc2b3549139a763b50d28fe0ab6bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1510-5289
0000-0003-4959-3372
0000-0002-1631-9652
0000-0001-9795-2160
0000-0001-6846-546X
PMID 35544509
PQID 2703425983
PQPubID 85417
PageCount 11
ParticipantIDs pubmed_primary_35544509
crossref_citationtrail_10_1109_JBHI_2022_3174249
proquest_miscellaneous_2662542091
crossref_primary_10_1109_JBHI_2022_3174249
proquest_journals_2703425983
ieee_primary_9772932
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref14
  doi: 10.1109/TNSRE.2015.2457511
– ident: ref16
  doi: 10.1016/j.jbiomech.2017.07.012
– ident: ref6
  doi: 10.1109/TIM.2021.3062162
– ident: ref12
  doi: 10.1109/ISISS.2019.8739728
– ident: ref24
  doi: 10.1109/TMECH.2015.2430357
– ident: ref7
  doi: 10.1109/JIOT.2021.3102856
– ident: ref17
  doi: 10.1016/j.icte.2016.10.005
– ident: ref9
  doi: 10.1109/TCPMT.2018.2810103
– ident: ref35
  doi: 10.1016/j.inffus.2021.11.006
– ident: ref1
  doi: 10.1007/s00415-008-5004-3
– ident: ref15
  doi: 10.1016/j.gaitpost.2021.01.013
– ident: ref11
  doi: 10.1109/IROS.2008.4650766
– ident: ref21
  doi: 10.1109/JSEN.2017.2787578
– ident: ref26
  doi: 10.1109/TAES.2019.2946506
– ident: ref20
  doi: 10.1109/JBHI.2015.2450232
– ident: ref22
  doi: 10.1109/ACCESS.2019.2946609
– ident: ref23
  doi: 10.1109/VTC2020-Fall49728.2020.9348709
– ident: ref2
  doi: 10.1109/TAFFC.2016.2549533
– ident: ref33
  doi: 10.1109/TIE.2019.2897550
– ident: ref4
  doi: 10.1109/JIOT.2015.2390075
– ident: ref27
  doi: 10.3390/app8071167
– ident: ref30
  doi: 10.4324/9780203771587
– ident: ref5
  doi: 10.1109/TNSRE.2015.2498287
– ident: ref25
  doi: 10.1109/ACCESS.2018.2816816
– ident: ref31
  doi: 10.3389/fnhum.2016.00319
– ident: ref36
  doi: 10.1016/j.smhl.2020.100162
– ident: ref10
  doi: 10.1109/TIM.2012.2218692
– ident: ref18
  doi: 10.1109/IEMBS.2011.6090226
– ident: ref19
  doi: 10.1016/j.humov.2021.102891
– ident: ref28
  doi: 10.1109/JSEN.2020.3016642
– ident: ref32
  doi: 10.1109/THMS.2020.2984181
– ident: ref13
  doi: 10.1109/JSEN.2020.3011627
– ident: ref3
  doi: 10.1109/ACCESS.2020.3016062
– ident: ref34
  doi: 10.1093/ageing/26.1.15
– ident: ref29
  doi: 10.1002/mds.26424
– ident: ref8
  doi: 10.1109/JBHI.2016.2636456
SSID ssj0000816896
Score 2.4623446
Snippet For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson's disease (PD) to evaluates the motor ability. The...
For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson's disease (PD) to evaluates the motor ability. The...
For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson’s disease (PD) to evaluates the motor ability. The...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4165
SubjectTerms abnormal gait recognition
Accelerometers
Algorithms
Attitude estimation
Bioinformatics
Biomedical measurement
Covariance matrices
Estimation
Evaluation
feature engineering
Feature recognition
Gait
Gait recognition
Gyroscopes
information fusion
Kalman filters
Kinematics
Movement disorders
Neurodegenerative diseases
Parameter modification
Parkinson's disease
phase segmentation
Segmentation
Statistics
Wearable technology
Title A Wearable Gait Analysis and Recognition Method for Parkinson's Disease Based on Error State Kalman Filter
URI https://ieeexplore.ieee.org/document/9772932
https://www.ncbi.nlm.nih.gov/pubmed/35544509
https://www.proquest.com/docview/2703425983
https://www.proquest.com/docview/2662542091
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SHEIvTZr04bxQoVAo9cYry_bqmDTZblO2h9LQ3IxGliBN4g0b7yW_PjPyg1La0osReCTLzEj6RvMCeJt5Z7xyGBPa8KSgWB9rI01sM6TDqbCTygVvi6_57EKdX2aXa_BhiIVxzgXnMzfiZrDlVwu74quyI81QMKUN90kxydtYreE-JRSQCOW4JDViWoiqM2KOE310fjL7TMqglKSjkjKoOFkon7QqY0_EX06kUGLl72gznDrTTZj3822dTa5HqwZH9uG3VI7_-0Nb8KyDn-K4lZfnsObqbdiYdwb2Hfh5LH6Q7HM8lfhkrhrRJy0Rpq7Et97baFGLeSg9LQjzCo6cDkFk7-7FaWvwESf0qATRnS2XRBIwrfhibm5NLaZXbKJ_ARfTs-8fZ3FXjiG2qdJNrAuPyPGFypjMavTj1OpUK6sUclZ9zMZoJaakcRKsNLRxYZZUcuJdYjBHTF_Cer2o3WsQFh1W3tM41F-iN6xXFlWCMnepLKoIkp4lpe1ylXPJjJsy6CyJLpmhJTO07Bgawfuhy12bqONfxDvMjIGw40ME-z3fy24p35ey4CyJmZ6kEbwZXtMiZMuKqd1iRTQ5qZFKEvaK4FUrL8PYvZjt_vmbe_CUZ9b6FO7DerNcuQPCOQ0eBgF_BAgY9b8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRQIuvMojUMBISEiIbLOOvVkfW-iyfWwPqBW9RR7HlkrbLNpmL_x6ZpyHEALEJbKUseNoxvY3nhfAWx28DcpjSmgjkILiQmqstKnTSIdT4aaVj94WJ5P5mTo81-cb8GGIhfHeR-czP-JmtOVXS7fmq7Idw1Awpw33llZK6TZaa7hRiSUkYkEuSY2UlqLqzJjjzOwc7s0PSB2UkrRUUgcVpwvls1Zp9kX85UyKRVb-jjfjuTO7D4t-xq27yeVo3eDI_fgtmeP__tIDuNcBULHbSsxD2PD1I7i96EzsW_BtV3wl6eeIKvHZXjSiT1sibF2JL72_0bIWi1h8WhDqFRw7HcPI3t2IT63JR-zRoxJEt79aEUlEteLIXl3bWswu2Ej_GM5m-6cf52lXkCF1uTJNaoqAyBGGylrtDIZx7kxulFMKOa8-6jE6iTnpnAQsLW1dqLNKToPPLE4Q8yewWS9r_wyEQ49VCDQO9ZcYLGuWRZWhnPhcFlUCWc-S0nXZyrloxlUZtZbMlMzQkhladgxN4P3Q5XubquNfxFvMjIGw40MC2z3fy24x35Sy4DyJ2kzzBN4Mr2kZsm3F1n65JpoJKZJKEvpK4GkrL8PYvZg9__M3X8Od-eniuDw-ODl6AXd5lq2H4TZsNqu1f0mop8FXUdh_Ag3l-Qw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Wearable+Gait+Analysis+and+Recognition+Method+for+Parkinson%27s+Disease+Based+on+Error+State+Kalman+Filter&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Liu%2C+Ruichen&rft.au=Wang%2C+Zhelong&rft.au=Qiu%2C+Sen&rft.au=Zhao%2C+Hongyu&rft.date=2022-08-01&rft.issn=2168-2208&rft.eissn=2168-2208&rft.volume=26&rft.issue=8&rft.spage=4165&rft_id=info:doi/10.1109%2FJBHI.2022.3174249&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon