A Wearable Gait Analysis and Recognition Method for Parkinson's Disease Based on Error State Kalman Filter

For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson's disease (PD) to evaluates the motor ability. The error state Kalman filter (ESKF) is used for attitude estimation, and the gait parameters are modified by phase segmentation and zero ve...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 26; no. 8; pp. 4165 - 4175
Main Authors Liu, Ruichen, Wang, Zhelong, Qiu, Sen, Zhao, Hongyu, Wang, Cui, Shi, Xin, Lin, Fang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2022.3174249

Cover

More Information
Summary:For the purpose of quantitative analysis, this paper proposes a wearable gait analysis method for Parkinson's disease (PD) to evaluates the motor ability. The error state Kalman filter (ESKF) is used for attitude estimation, and the gait parameters are modified by phase segmentation and zero velocity update (ZUPT) algorithm. In addition, this study uses gait parameters as classifier features to recognize abnormal gait, and compares the recognition effect with statistical features. The effect of our gait system is verified by comparison with the OptiTrack system, and the mean absolute error (MAE) of step length and foot clearance are 2.52<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>3.61 cm and 0.96<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>1.24 cm respectively. Forty Parkinson's patients and forty age-matched healthy people are recruited for gait comparison, the analysis results showed significant differences between the two groups. The abnormal gait recognition results show that gait features have stronger generalization ability than statistical features in leave-one-subject-out (LOSO) validation. The method proposed in this study can be applied to the gait analysis and objective evaluation of PD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2022.3174249