Multiobject Tracking by Submodular Optimization

In this paper, we propose a new multiobject visual tracking algorithm by submodular optimization. The proposed algorithm is composed of two main stages. At the first stage, a new selecting strategy of tracklets is proposed to cope with occlusion problem. We generate low-level tracklets using overlap...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 49; no. 6; pp. 1990 - 2001
Main Authors Shen, Jianbing, Liang, Zhiyuan, Liu, Jianhong, Sun, Hanqiu, Shao, Ling, Tao, Dacheng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2018.2803217

Cover

More Information
Summary:In this paper, we propose a new multiobject visual tracking algorithm by submodular optimization. The proposed algorithm is composed of two main stages. At the first stage, a new selecting strategy of tracklets is proposed to cope with occlusion problem. We generate low-level tracklets using overlap criteria and min-cost flow, respectively, and then integrate them into a candidate tracklets set. In the second stage, we formulate the multiobject tracking problem as the submodular maximization problem subject to related constraints. The submodular function selects the correct tracklets from the candidate set of tracklets to form the object trajectory. Then, we design a connecting process which connects the corresponding trajectories to overcome the occlusion problem. Experimental results demonstrate the effectiveness of our tracking algorithm.<xref ref-type="fn" rid="fn1"> 1 1 Our source code is available at https://github.com/shenjianbing/submodulartrack .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2018.2803217