Investigating Fuel Efficiency of Heavy-Duty Vehicle Platooning Using a CFD Model Investigating Fuel Efficiency of Heavy-Duty Vehicle Platooning Using a CFD Model
Platooning represents a crucial strategy for mitigating emissions from heavy-duty vehicles (HDVs). This study evaluates the effects of platoon composition on the surrounding airflow utilizing a computational fluid dynamics (CFD) model, and quantifies the resultant fuel efficiency and CO 2 emissions....
Saved in:
Published in | Asia-Pacific journal of atmospheric sciences Vol. 61; no. 2; pp. 1 - 16 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
Korean Meteorological Society
01.05.2025
Springer Nature B.V 한국기상학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1976-7633 1976-7951 |
DOI | 10.1007/s13143-025-00390-y |
Cover
Summary: | Platooning represents a crucial strategy for mitigating emissions from heavy-duty vehicles (HDVs). This study evaluates the effects of platoon composition on the surrounding airflow utilizing a computational fluid dynamics (CFD) model, and quantifies the resultant fuel efficiency and CO
2
emissions. This study examines fuel consumption data reconstructed from field experiments to validate the CFD model’s ability to accurately simulate drag forces within a homogeneous three-truck platoon. The potential for fuel savings was assessed based on CFD-simulated fuel consumption, taking into account various inter-vehicle distances and driving speeds. The model successfully reproduced the fuel consumption observed in a platooning formation comprising lead, middle, and trailing trucks, with an error margin below 6.2%. Fuel consumption analysis shows that while lead and middle trucks consume more fuel with increased inter-vehicle distances, the trailing truck's consumption decreases at specific distance-to-length ratios (D/L), increasing again beyond a D/L of 1.1. Additionally, a significant decrease in total fuel efficiency was noted for D/L ratios exceeding 1.5. Considering the diverse platooning scenarios analyzed, the study anticipates an annual reduction of up to 7 tons of CO
2
equivalent per vehicle. By optimizing platooning configurations, this research contributes to enhancing fuel efficiency and reducing emissions from HDVs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1976-7633 1976-7951 |
DOI: | 10.1007/s13143-025-00390-y |